設(shè)f(x)在(-∞,+∞)為減函數(shù),a,b∈R且a+b≤0,則下列選項正確的是( 。
A、f(a)+f(b)≤-[f(a)+f(b)]B、f(a)+f(b)≥f(-a)+f(-b)C、f(a)+f(b)≥-[f(a)+f(b)]D、f(a)+f(b)≤f(-a)+f(-b)
分析:由題意可得a≤-b,且b≤-a.再根據(jù)f(x)在(-∞,+∞)為減函數(shù),可得f(a)≥f(-b),f(b)≥f(-a),再利用不等式的性質(zhì)得出結(jié)論.
解答:解:∵a,b∈R且a+b≤0,∴a≤-b,且b≤-a.
又f(x)在(-∞,+∞)為減函數(shù),∴f(a)≥f(-b),f(b)≥f(-a),
∴f(a)+f(b)≥f(-a)+f(-b),
故選:B.
點評:本題主要考查函數(shù)的單調(diào)性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-x+2a-1(a>0)
(Ⅰ)設(shè)f(x)在區(qū)間[1,2]的最小值為g(a),求g(a)的表達式;
(Ⅱ)設(shè)h(x)=
f(x)x
,若函數(shù)h(x)在區(qū)間[1,2]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)在R上為增函數(shù),若方程x+f(x)=m的解為p,則方程x+f-1(x)=m的解是
m-p
m-p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•馬鞍山模擬)已知函數(shù)f(x)=ln(1+x2)+ax.
(1)設(shè)f(x)在x=0處取得極值,求a的值;
(2)當a≤0時,討論f(x)的單調(diào)性;
(3)當a=-1時,證明:(1+
1
22
)(1+
1
42
)(1+
1
82
)…(1+
1
22n
)<e(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1,(a為實常數(shù))
(1)若a=1,將f(x)寫出分段函數(shù)的形式,并畫出簡圖,指出其單調(diào)遞減區(qū)間;
(2)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式.

查看答案和解析>>

同步練習冊答案