由直線上的點(diǎn)向圓C:引切線,
求切線段長的最小值。

解析試題分析:解法1:, ,                           
,         

直線上的點(diǎn)向圓C引切線長是
,
∴ 直線上的點(diǎn)向圓C引的切線長的最小值是         
解法2:,           
圓心C距離是,
∴直線上的點(diǎn)向圓C引的切線長的最小值是 
考點(diǎn):極坐標(biāo)與參數(shù)方程
點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線()上一點(diǎn)到其準(zhǔn)線的距離為.

(Ⅰ)求的值;
(Ⅱ)設(shè)拋物線上動(dòng)點(diǎn)的橫坐標(biāo)為),過點(diǎn)的直線交于另一點(diǎn),交軸于點(diǎn)(直線的斜率記作).過點(diǎn)的垂線交于另一點(diǎn).若恰好是的切線,問是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動(dòng)直線交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得|=3|.
(1)求橢圓的標(biāo)準(zhǔn)方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

動(dòng)圓過定點(diǎn),且與直線相切,其中.設(shè)圓心的軌跡的程為
(1)求;
(2)曲線上的一定點(diǎn)(0) ,方向向量的直線(不過P點(diǎn))與曲線交與A、B兩點(diǎn),設(shè)直線PA、PB斜率分別為,,計(jì)算
(3)曲線上的兩個(gè)定點(diǎn)、,分別過點(diǎn)作傾斜角互補(bǔ)的兩條直線分別與曲線交于兩點(diǎn),求證直線的斜率為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線  在點(diǎn)  處的切線  平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線  , 且  也過切點(diǎn) ,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案