【題目】設(shè)橢圓的兩個焦點分別為, ,過作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率是( )
A. B. C. D.
【答案】C
【解析】試題分析:解:設(shè)點P在x軸上方,坐標(biāo)為(),∵為等腰直角三角形,∴|PF2|=|F1F2|, ,故選D.
考點:橢圓的簡單性質(zhì)
點評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對任意的正數(shù)x,2x+≥1”與“對任意的正數(shù)x,2x+≥1”?“a=
”真假,進而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時,由基本不等式可得:
“對任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;
而“對任意的正數(shù)x,2x+≥1的”時,可得“a≥”
即“對任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為實常數(shù)) .
(I)當(dāng)時,求函數(shù)在上的最大值及相應(yīng)的值;
(II)當(dāng)時,討論方程根的個數(shù).
(III)若,且對任意的,都有,求
實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,平面,,,.是的中點,是的中點,點在線段上,且.
(1)證明:平面;
(2)若二面角的大小為60°,求∠BDC的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個定理:“三角形的外心、垂心和重心都在同一直線上。”這就是著名的歐拉線定理,在中,分別是外心、垂心和重心,為邊的中點,下列四個結(jié)論:(1);(2);(3);(4)正確的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,函數(shù)的最小值為.
(1)當(dāng)時,求的值;
(2)求;
(3)已知函數(shù)為定義在上的增函數(shù),且對任意的都滿足,問:是否存在這樣的實數(shù),使不等式對所有恒成立,若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com