精英家教網 > 高中數學 > 題目詳情

已知長方形ABCD, AB=2, BC=1. 以AB的中點為原點建立如圖8所示的平面直角坐標系.

(Ⅰ)求以A、B為焦點,且過C、D兩點的橢圓的標準方程;

(Ⅱ)過點P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點,是否存在直線,使得以弦MN為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.

(Ⅰ) (Ⅱ)存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點


解析:

(Ⅰ)由題意可得點A,B,C的坐標分別為.……1分

設橢圓的標準方程是.……2分

……4分

.……5分

橢圓的標準方程是……6分

(Ⅱ)由題意直線的斜率存在,可設直線的方程為.……7分

設M,N兩點的坐標分別為

聯立方程: 

消去整理得,

……9分

若以MN為直徑的圓恰好過原點,則,所以,……10分

所以,,

所以,

……11分   得……12分

所以直線的方程為,或.……13分

所以存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點. ……14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知長方形ABCD,AB=4,BC=3,則以A、B為焦點,且過C、D兩點的橢圓的離心率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知長方形ABCD,AB=6,BC=7/4.以AB的中點0為原點建立如圖所示的平面直角坐標系x0y
(1)求以A、B為焦點,且過C、D兩點的橢圓C的標準方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,
|0P||0M|
=λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知長方形ABCD的兩條對角線的交點為E(1,0),且AB與BC所在的直線方程分別為:x+3y-5=0與ax-y+5=0.
(1)求a的值;
(2)求DA所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知長方形ABCD的AB=3,AD=4.AC∩BD=O.將長方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.過A作BD的垂線交BD于E.

(1)問a為何值時,AE⊥CD;
(2)當二面角A-BD-C的大小為90°時,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•日照一模)已知長方形ABCD,AB=2
2
,BC=
3
3
.以AB的中點O為原點建立如圖所示的平面直角坐標系xOy.
(I)求以A,B為焦點,且過C,D兩點的橢圓P的標準方程;
(Ⅱ)已知定點E(-1,0),直線y=kx+t與橢圓P交于M、N相異兩點,證明:對作意的t>0,都存在實數k,使得以線段MN為直徑的圓過E點.

查看答案和解析>>

同步練習冊答案