設(shè)函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
(3)『附加題』是否存在最小的正整數(shù),使得當(dāng)時(shí),不等式恒成立.
解:(1)由題意知,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051816314490625486/SYS201205181632542187427936_DA.files/image002.png">,
時(shí),由,得(舍去),
當(dāng)時(shí),,當(dāng)時(shí),,
所以當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,
所以…………7分
(2)由題意在有兩個(gè)不等實(shí)根,
即在有兩個(gè)不等實(shí)根,
設(shè),則,解之得;…………14分
(3)對(duì)于函數(shù),令函數(shù)
則,
所以函數(shù)在上單調(diào)遞增,又時(shí),恒有
即恒成立.取,則有恒成立.
顯然,存在最小的正整數(shù)N=1,使得當(dāng)時(shí),不等式恒成立…………17分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省嵊泗中學(xué)高二第二學(xué)期5月月考文科數(shù)學(xué) 題型:解答題
(本小題滿分15分)
設(shè)函數(shù),其中,
(1)求函數(shù)的極值和單調(diào)區(qū)間;;w
(2)已知函數(shù)有3個(gè)不同的零點(diǎn),且 ,若對(duì)任意的,恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013上海市奉賢區(qū)高考一模文科數(shù)學(xué)試卷(帶解析) 題型:解答題
設(shè)函數(shù),其中;
(1)若的最小正周期為,求的單調(diào)增區(qū)間;(7分)
(2)若函數(shù)的圖象的一條對(duì)稱軸為,求的值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省常州市奔牛高級(jí)中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省馬鞍山市高三第一次月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù),其中實(shí)數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間上均為增函數(shù),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆河北省高二下學(xué)期期末考試文科數(shù)學(xué)(A卷) 題型:解答題
設(shè)函數(shù),其中,。
(1)若,求曲線在點(diǎn)處的切線方程;
(2)是否存在負(fù)數(shù),使對(duì)一切正數(shù)都成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com