已知△ABC所在平面內(nèi)有一點P,滿足4
PA
+
BP
+
CP
=
0
,則
S△PAB
S△ABC
=
1
2
1
2
分析:取BC中點O,可得
PA
=
AO
,結(jié)合圖形,可得面積的關(guān)系.
解答:解:∵4
PA
+
BP
+
CP
=
0
,
2
PA
=
AB
+
AC

取BC中點O,則
AB
+
AC
=2
AO

PA
=
AO

∴S△PAB=S△ABO
S△ABO=
1
2
S△ABC

S△PAB
S△ABC
=
1
2

故答案為:
1
2
點評:本題考查向量知識的運用,考查三角形面積的計算,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC所在平面上的動點M滿足2
AM
BC
=
AC
2
-
AB
2
,則M點的軌跡過△ABC的
心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)已知△ABC所在平面內(nèi)一點P(P與A、B、C都不重合),且滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC所在平面上的動點M滿足2
AM
BC
AC
2
 -
AB
2
,則M點的軌跡過△ABC的(  )
A、內(nèi)心B、垂心C、重心D、外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•汕頭二模)給出以下五個命題:
①?n∈N*,(n2-5n+5)2=1.
②當(dāng)x,y滿足不等式組
x≥0
x≥y
2x-y≤1
時,目標(biāo)函數(shù)k=3x+2y的最大值為5.
③設(shè)全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則?U(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內(nèi)一點P(P與A,B,C都不重合)滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為2.
其中正確命題的序號是
②⑤
②⑤

查看答案和解析>>

同步練習(xí)冊答案