【題目】在直角坐標(biāo)系xOy中直線與拋物線C交于AB兩點(diǎn),且

C的方程;

D為直線外一點(diǎn),且的外心MC上,求M的坐標(biāo).

【答案】(1)(2)的坐標(biāo)為.

【解析】

(1)將直線方程與拋物線方程聯(lián)立,設(shè)出A,B點(diǎn)坐標(biāo),根據(jù)韋達(dá)定理得x1x2y1y2表達(dá)式,根據(jù)OA⊥OB可知x1x2+y1y2=0,即可求得p,從而得拋物線方程.(2)三角形的外心為中垂線的交點(diǎn),利用中點(diǎn)坐標(biāo)公式得線段AB中點(diǎn)N的坐標(biāo),得到線段的中垂線方程,將中垂線方程與拋物線方程聯(lián)立即可得到外心M.

(1)聯(lián)立, 設(shè)A(

,.

從而.

,

,解得.故的方程為.

(2)設(shè)線段的中點(diǎn)為.

由(1)知,,.

則線段的中垂線方程為,即.

聯(lián)立,解得或4.

從而的外心的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市實(shí)施全域旅游,將鄉(xiāng)村旅游公路建設(shè)與特色田園鄉(xiāng)村發(fā)展結(jié)合,精心打造全長(zhǎng)365公里的“1號(hào)公路,對(duì)內(nèi)串聯(lián)區(qū)域內(nèi)主要景區(qū)景點(diǎn)和自然村,對(duì)外通達(dá)周邊縣(市),以路引景、為景串線,形成一個(gè)大環(huán)小圈、內(nèi)連外引的路網(wǎng)體系.如今的“1號(hào)公路,不僅成為該市旅游業(yè)的顏值擔(dān)當(dāng),更成為推動(dòng)鄉(xiāng)村振興的實(shí)力擔(dān)當(dāng),農(nóng)村居住環(huán)境日益改善,新農(nóng)村別墅隨處可見(jiàn).圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面是全等的等腰梯形,左右兩坡屋面是全等的三角形.點(diǎn)在平面上的射影分別為(即:平面,垂足為,垂足為.已知,梯形的面積是面積的2.2..

1)當(dāng)時(shí),求屋頂面積的大;

2)求屋頂面積關(guān)于的函數(shù)關(guān)系式;

3)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為為正的常數(shù)),下部主體造價(jià)與其高度成正比,比例系數(shù)為.現(xiàn)欲造一棟上、下總高度為的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函數(shù).

1)求實(shí)數(shù)k的值;

2)求函數(shù)gx)的定義域;

(3)若函數(shù)fx)與gx)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.

(1)求橢圓的方程;

(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中表示不超過(guò)的最大整數(shù),下列關(guān)于說(shuō)法正確的有:______

的值域?yàn)閇-1,1]

為奇函數(shù)

為周期函數(shù),且最小正周期T=4

在[0,2)上為單調(diào)增函數(shù)

的圖像有且僅有兩個(gè)公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若是偶函數(shù),求的值;

2)設(shè)函數(shù),當(dāng)時(shí),有且只有一個(gè)實(shí)數(shù)根,求的取值范圍;

3)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)數(shù)根,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三角形的邊長(zhǎng)為,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;

④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);

⑥若的觀測(cè)值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺;

⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤. 其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=,其中a為常數(shù).

1)當(dāng)a1時(shí),求fx)的最大值;

2)若fx)在區(qū)間(0,e]上的最大值為-2,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案