函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù),則a的取值范圍
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的單調(diào)性與開口方向和對(duì)稱軸有關(guān),先求出函數(shù)的對(duì)稱軸,然后結(jié)合開口方向可知[2,+∞)是[a,+∞)的子集即可.
解答: 解:二次函數(shù)f(x)=x2-2ax-3是開口向上的二次函數(shù)
對(duì)稱軸為x=a,
∴二次函數(shù)f(x)=x2-2ax-3在[a,+∞)上是增函數(shù)
∵在區(qū)間[2,+∞)上是增函數(shù),
∴a≤2.
故答案為:a≤2.
點(diǎn)評(píng):本題主要考查了二次函數(shù)的單調(diào)性,二次函數(shù)是高考中的熱點(diǎn)問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
y 2
a x
+
x 2
b 2
=1(a>b>0)的短軸長為4,離心率為
2
2
,其一個(gè)焦點(diǎn)在拋物線C2:x2=2py(p>0)的準(zhǔn)線上,過點(diǎn)M(0,1)的直線交C1于C、D兩點(diǎn),交C2于A、B兩點(diǎn),分別過點(diǎn)A、B作C2的切線,兩切線交于點(diǎn)Q.
(Ⅰ)求C1、C2的方程;
(Ⅱ)求△QCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈R,x2-2x+m≤0”是假命題,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零實(shí)數(shù),如果f(2013)=-1,那么f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對(duì)任意正整數(shù)a、b滿足條件f(a+b)=f(a)•f(b)且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2008)
f(2007)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(π+α)=-
1
2
,
3
2
π<α<2π,則sin(3π+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-3x2+1-
3
a
(a≠0)
(Ⅰ)若f(x)的圖象在x=-1處的切線與直線y=-
1
3
x+1垂直,求實(shí)數(shù)a的取值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅲ)若a=1時(shí),過點(diǎn)M(2,m)(m≠-6),可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+ax+6(a是實(shí)數(shù))中,y的取值范圍是y≥0,若關(guān)于x的不等式x2+ax+6<c的解為m<x<m+6,則實(shí)數(shù)c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(1)=
1
4
,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R).則:
(1)f(0)=
 
;
(2)f(2013)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案