由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn
分析:(1)f(x)=2
x
(x≥0)?an=2
n
,f-1(x)=
x2
4
(x≥0)
,由此能求出數(shù)列{an}的反數(shù)列為{bn}的通項(xiàng)公式.(2)把不等式化為
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
,Tn=
2
n+1
+
2
n+2
+…+
2
2n
,Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0
,數(shù)列{Tn}單調(diào)遞增,所以(Tnmin=T1=1,要使不等式恒成立,只要1>
1
2
loga(1-2a)
,由此能求出使不等式對(duì)于任意正整數(shù)n恒成立的a的取值范圍.
(3)設(shè)公共項(xiàng)tk=cp=dn,k、p、q為正整數(shù),當(dāng)λ為奇數(shù)時(shí),tn=2n-1,{tn}的前n項(xiàng)和Sn=n2.當(dāng)λ為偶數(shù)時(shí),tn=3n,{tn}的前n項(xiàng)和Sn=
3
2
(3n-1)
解答:解:(1)f(x)=2
x
(x≥0)?an=2
n
(n為正整數(shù)),f-1(x)=
x2
4
(x≥0)

所以數(shù)列{an}的反數(shù)列為{bn}的通項(xiàng)bn=
n2
4
(n為正整數(shù))(2分)
(2)對(duì)于(1)中{bn},不等式化為
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
..(3分)
Tn=
2
n+1
+
2
n+2
+…+
2
2n
,Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0

∴數(shù)列{Tn}單調(diào)遞增,(5分)
所以(Tnmin=T1=1,要是不等式恒成立,只要1>
1
2
loga(1-2a)
.(6分)
∵1-2a>0,∴0<a<
1
2
,又1-2a>a2,0<a<
2
-1

所以,使不等式對(duì)于任意正整數(shù)n恒成立的a的取值范圍是(0,
2
-1)
..(8分)
(3)設(shè)公共項(xiàng)tk=cp=dn,k、p、q為正整數(shù),
當(dāng)λ為奇數(shù)時(shí),cn=2n-1,dn=
1
2
(n+1)
(9分)
2p-1=
1
2
(p+1),q=4p-3
,則{cn}?{bn}(表示{cn}是{bn}的子數(shù)列),tn=2n-1
所以{tn}的前n項(xiàng)和Sn=n2..(11分)
當(dāng)λ為偶數(shù)時(shí),cn=3n,dn=log3n(12分)
3q=log3q,則q=33p,同樣有{cn}?{bn},tn=3n
所以{tn}的前n項(xiàng)和Sn=
3
2
(3n-1)
(14分)
點(diǎn)評(píng):本題考查數(shù)列通項(xiàng)公式的求法、實(shí)數(shù)的取值范圍和前n項(xiàng)和的求法,解題時(shí)要注意導(dǎo)數(shù)的合理運(yùn)用和分類(lèi)討論思想的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
(公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10
(3)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
(3)對(duì)(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案