【題目】已知F1 , F2為橢圓 的左、右焦點(diǎn),F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.

(1)求橢圓C1的方程;
(2)過點(diǎn)P(0,1)的直線l1交橢圓C1于A,B兩點(diǎn),過P與l1垂直的直線l2交圓C2于C,D兩點(diǎn),M為線段CD中點(diǎn),求△MAB面積的取值范圍.

【答案】
(1)解:圓C2的方程為 ,

此圓與x軸相切,切點(diǎn)為

,即a2﹣b2=2,且 ,

又|QF1|+|QF2|=3+1=2a

∴a=2,b2=a2﹣c2=2

∴橢圓C1的方程為


(2)解:當(dāng)l1平行x軸的時(shí)候,l2與圓C2無公共點(diǎn),從而△MAB不存在;

設(shè)l1:x=t(y﹣1),則l2:tx+y﹣1=0.

,消去x得(t2+2)y2﹣2t2y+t2﹣4=0,

又圓心 到l2的距離 ,得t2<1.

又MP⊥AB,QM⊥CD

∴M到AB的距離即Q到AB的距離,設(shè)為d2,

∴△MAB面積

∴△MAB面積的取值范圍為


【解析】(1)圓C2的方程為 ,由此圓與x軸相切,求出a,b的值,由此能求出橢圓C1的方程.(2)設(shè)l1:x=t(y﹣1),則l2:tx+y﹣1=0,與橢圓聯(lián)立,得(t2+2)y2﹣2t2y+t2﹣4=0,由此利用弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合已知條件能求出△MAB面積的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場(chǎng)價(jià)格(元/kg)

6

10

概率

0.4

0.6


(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項(xiàng)為15的等比數(shù)列,其前n項(xiàng)的和為Sn , 若S3 , S5 , S4成等差數(shù)列,則公比q= , 當(dāng){an}的前n項(xiàng)的積達(dá)到最大時(shí)n的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.

(1)證明:BD⊥平面DEC;
(2)若二面角A﹣ED﹣B的大小為30°,求EC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)f(a﹣x)=1對(duì)任意實(shí)數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時(shí),f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時(shí),f(x)的取值范圍為 , 當(dāng)x∈[﹣2016,2016]時(shí),f(x)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2﹣c2= ab.
(1)求cos 的值;
(2)若c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,關(guān)于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四個(gè)相異的實(shí)數(shù)根,則a的取值范圍是(
A.(﹣1,
B.(1,+∞)
C.( ,2)
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點(diǎn),求二面角A﹣EC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來共享單車在我國(guó)主要城市發(fā)展迅速.目前市場(chǎng)上有多種類型的共享單車,有關(guān)部門對(duì)其中三種共享單車方式(M方式、Y方式、F方式)進(jìn)行統(tǒng)計(jì)(統(tǒng)計(jì)對(duì)象年齡在15~55歲),相關(guān)數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)

方式
年齡分組

M
方式

Y
方式

F
方式

[15,25)

25%

20%

35%

[25,35)

50%

55%

25%

[35,45)

20%

20%

20%

[45,55]

5%

a%

20%

不同性別選擇共享單車種類情況統(tǒng)計(jì)(表2)

性別
使用單車
種類數(shù)(種)

1

20%

50%

2

35%

40%

3

45%

10%

(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計(jì)對(duì)象中隨機(jī)選取男女各一人,試估計(jì)男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個(gè)年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結(jié)論是否正確?(只需寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案