如圖,在正△ABC的邊BC、CA、AB上分別取點P、Q、R,使CQ=2BP,AR=3BP.已知正三角形的邊長是11cm,BP=xcm,△PQR的面積為S
(1)用解析式將S表示成x的函數(shù);
(2)求S的最小值及相應的x值.
考點:函數(shù)解析式的求解及常用方法,函數(shù)的最值及其幾何意義
專題:函數(shù)的性質及應用
分析:(1)首先,求解△ABC、△BPR、△PCQ、△ARQ的面積,然后,求解得到將S表示成x的函數(shù);
(2)根據(jù)(1),借助于二次函數(shù)的性質求解最值即可.
解答: 解:(1)∵BP=xcm,
∴AR=3x,CQ=2x,
∴BR=11-3x,
△BPR中,BP邊上的高為
3
(11-3x)
2
,
△PCQ中,PC邊上的高為
2
3
x
2
,
△ARQ中,AR邊上的高為
3
(11-2x)
2

∴S=S△ABC-(S△BPR+S△PCQ+S△ARQ)
=
11
3
4
(x2-6x+11)

∴S=
11
3
4
(x2-6x+11)
,(0<x<11),
(2)根據(jù)(1),
S=
11
3
4
(x2-6x+11)
,
=
11
3
4
[(x-3)2+2]

∵0<x<11,
∴當x=3時,S有最小值
11
3
2
點評:本題重點考查函數(shù)的解析式的求解方法,理解自變量的取值情形是解題的關鍵,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算
e
1
1
x
dx的結果是( 。
A、e
B、1-e-2
C、1
D、e-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,直線PA⊥平面ABC,且∠ABC=90°,又點Q,M,N分別是線段PB,AB,BC的中點,且點K是線段MN上的動點.
(1)證明:直線QK∥平面PAC;
(2)若PA=AB=BC,求二面角Q-AN-M的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

層出不窮的食品安全問題,已經(jīng)極大地影響了公眾對于食品安全的信心,抓緊食品安全刻不容緩.假設某種品牌的食品在進入市場前必須要對四項指標依次進行檢測,如果第一項檢測不合格則不能進入市場,則停止檢測;若第一項檢測合格,后三項中有兩項檢測不合格就不能進入市場,一旦檢測出該品牌的食品不能進入市場或者能進入市場都要停止檢測.已知每一項檢測是相互獨立的,第一項檢測合格的概率為
4
5
,其余三項每一項檢測合格的概率都為
2
3

(Ⅰ)求該品牌的食品不能進入市場的概率;
(Ⅱ)設停止檢測時所進行的檢測項數(shù)為ξ,求ξ的分布列和數(shù)學期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x2-9x+m≤0對x∈[2,3]總成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α,β都是銳角,且sinα=
5
13
,cos(α+β)=-
4
5
,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,cosA=
3
5
,a=4,b=3,求角C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線兩個焦點分別為F1(-10,0),F(xiàn)2(10,0),雙曲線上一點P到F1,F(xiàn)2距離差的絕對值等于12,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某債券市場發(fā)行三種債券:P種面值為100元,一年到期本息和為103元;Q種面值為50元,一年到期51.4元;R種面值20元,一年到期20.5元.作為購買者,要選擇受益最大的一種,分析三種債券的收益,應選擇
 
 種債券.

查看答案和解析>>

同步練習冊答案