【題目】已知函數(shù).
(1)過點(diǎn)(e是自然對數(shù)的底數(shù))作函數(shù)圖象的切線l,求直線l的方程;
(2)求函數(shù)在區(qū)間()上的最大值;
(3)若,且對任意恒成立,求k的最大值.(參考數(shù)據(jù):,)
【答案】(1)(2)(3)最大值是4.
【解析】
(1)設(shè)出切點(diǎn)坐標(biāo)為,求得導(dǎo)函數(shù)后,將橫坐標(biāo)帶入可得切線的斜率.點(diǎn)在切線方程上,可由點(diǎn)斜式表示出切線方程.帶入切點(diǎn)后,可求得切點(diǎn)的橫坐標(biāo).帶入切線方程即可求解.
(2)求得導(dǎo)函數(shù),并令.即可求得極值點(diǎn),并根據(jù)導(dǎo)函數(shù)符號判斷出為極小值點(diǎn).討論及兩種情況,即可根據(jù)單調(diào)性求得最大值.
(3)因?yàn)?/span>時(shí),分類參數(shù).構(gòu)造函數(shù),求得導(dǎo)函數(shù),并令,再求得.通過的符號,判斷出的單調(diào)性.從而由零點(diǎn)存在定理可知在上有且僅有一個(gè)零點(diǎn).設(shè)這個(gè)零點(diǎn)為,結(jié)合函數(shù)可判斷出當(dāng)時(shí),,當(dāng)時(shí),.從而可知在處取得最小值.即可由整數(shù)求得的最大值.
(1)設(shè)切點(diǎn)為,則,
因?yàn)?/span>,所以,
因?yàn)榍芯過點(diǎn),所以切線方程為,①
代入切點(diǎn)得,,
解得,代入①得直線l的方程為,
即直線l的方程為.
(2)函數(shù),則
由得,,
所以當(dāng)時(shí),,當(dāng)時(shí),,
所以是極小值,
因?yàn)?/span>()恒成立,所以分如下兩種情況討論:
1°當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù),
則,
2°當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù),
則,
因?yàn)?/span>,
顯然,
所以,
綜上所述的最大值為.
(3)由可知,所以等價(jià)于,
令,則,
令,則,恒成立,
所以在上是增函數(shù),
又因?yàn)?/span>,,
所以在上有且僅有一個(gè)零點(diǎn),
記該零點(diǎn)為,
所以,也即,
所以當(dāng)時(shí),,當(dāng)時(shí),,
所以在處取得極小值,也是最小值,
即,
所以整數(shù)(),
所以k的最大值是4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題甲:“一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ).”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過圓錐的兩條母線的截面,以軸截面的面積最大.”其中真命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某鎮(zhèn)有一塊空地,其中,,.當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中M,N都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護(hù)網(wǎng).
(1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長度;
(2)為節(jié)省資金投入,人工湖的面積要盡可能小,設(shè),問:當(dāng)多大時(shí)的面積最小?最小面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足設(shè),則z的取值范圍是______.(表示a,b兩數(shù)中的較大數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面,底面是正方形,為中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過,兩點(diǎn),且圓心在直線上.
(1)求圓的方程
(2)從原點(diǎn)向圓作切線,求切線方程及切線長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 命題:,,則命題:,
B. “”是“”的充要條件
C. 命題“若,則或”的逆否命題是“若或,則”
D. 命題:,;命題:對,總有;則是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當(dāng)時(shí),函數(shù).
(1)求,的值;
(2)求的表達(dá)式;
(3)若關(guān)于的方程有解,那么將方程在取某一確定值時(shí)所求得的所有解的和記為,求的所有可能值及相應(yīng)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com