(坐標(biāo)系與參數(shù)方程選做題) 在平面直角坐標(biāo)系xoy中,若圓C:
x=rcosθ-1
y=rsinθ+2
(θ為參數(shù))與直線L:
x=4t+6
y=-3t-2
(t為參數(shù))相交的弦長為4
6
,則圓的半徑r=
 
分析:由題意將圓C和直線l先化為一般方程坐標(biāo),然后再計算直線l與圓C相交所得的弦長,建立等式,解之即可求出r的值.
解答:解:∵圓C:
x=rcosθ-1
y=rsinθ+2
(θ為參數(shù)),
∴消去參數(shù)θ得(x+1)2+(y-2)2=r2,
∵直線L:
x=4t+6
y=-3t-2
(t為參數(shù)),
∴消去參數(shù)t得直線的直角坐標(biāo)方程為3x+4y-10=0,
∴圓心到直線l的距離d=
|-3+8-10|
5
=1,
又∵直線l與圓C相交所得的弦長為4
6

∴12+(2
6
2=r2,解得r=5.
故答案為:5.
點評:此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會互相轉(zhuǎn)化,根據(jù)實際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點問題.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點為極點,x軸的正半軸為極軸,單位長度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為
2
,
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點A(1,
π
3
),B(3,
3
),O是極點,則△AOB的面積等于
3
3
4
3
3
4

(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案