12.函數(shù)y=$\frac{3}{1-\sqrt{1-x}}$的定義域可用區(qū)間表示為(-∞,0)∪(0,1].

分析 根據(jù)函數(shù)的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:∵函數(shù)y=$\frac{3}{1-\sqrt{1-x}}$,
∴$\left\{\begin{array}{l}{1-\sqrt{1-x}≠0}\\{1-x≥0}\end{array}\right.$,
解得x≤1且x≠0,
∴函數(shù)y的定義域是(-∞,0)∪(0,1].
故答案為:(-∞,0)∪(0,1].

點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知Sn為等差數(shù)列{an}的前n項和,a1=-1,S4=14,則a4等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.求:
(1)f(x)圖象的對稱中心的坐標(biāo);
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{2a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C1過點(-2,0),($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),拋物線C2的焦點在x軸上,過點(3,-2$\sqrt{3}$)
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過點C2的焦點F;②與C1交不同兩點M、N,且滿足$\overrightarrow{OM}⊥\overrightarrow{ON}$?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知扇形的半徑為2,面積為$\frac{2}{5}$π,則該扇形的圓心角為$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有15名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=tanx與g(x)=sinx的圖象在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上的交點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為300,求二面角D-PC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案