(本小題滿分12分)
已知數(shù)列滿足條件:,
(1)判斷數(shù)列是否為等比數(shù)列;  
(2)若,令, 記
證明: 
(1)當(dāng)時(shí),不是等比數(shù)列
當(dāng)時(shí),是以為首項(xiàng),2為公比的等比數(shù)列.
(2)由⑴知,所以 
推出 

試題分析:(1)證明:由題意得  ……………2分
, 所以,當(dāng)時(shí),不是等比數(shù)列
當(dāng)時(shí),是以為首項(xiàng),2為公比的等比數(shù)列. …………5分
(2)解:由⑴知,        ……………7分
 ……………9分
…………12分
點(diǎn)評(píng):典型題,利用遞推公式,求得數(shù)列的通項(xiàng)公式,進(jìn)一步求和,“裂項(xiàng)相消法”是經(jīng)?疾榈臄(shù)列求和方法。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列的首項(xiàng),前n項(xiàng)和,當(dāng)時(shí),。問(wèn)n為何值時(shí)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和為,公差d0,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在如圖所示的數(shù)表中,第i行第j列的數(shù)記為,且滿足, ();又記第3行的數(shù)3,5,8,13,22,39……為數(shù)列{bn},則
(1)此數(shù)表中的第2行第8列的數(shù)為_________.
(2)數(shù)列{bn}的通項(xiàng)公式為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知4個(gè)命題:
①若等差數(shù)列的前n項(xiàng)和為則三點(diǎn)共線;
②命題:“”的否定是“”;
③若函數(shù)在(0,1)沒(méi)有零點(diǎn),則k的取值范圍是
是定義在R上的奇函數(shù),的解集為(2,2)
其中正確的是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)和為,已知,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知數(shù)列的前n項(xiàng)和為,且,(=1,2,3…)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
若S是公差不為0的等差數(shù)列的前n項(xiàng)和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列成等差數(shù)列,其前項(xiàng)和為,若,則的余弦值為        .

查看答案和解析>>

同步練習(xí)冊(cè)答案