設(shè)m∈N*,且m<25,則(25-m)(26-m)…(30-m)等于(  )
分析:由于所給的式子是6個(gè)連續(xù)自然數(shù)的乘積,最大的為30-m,根據(jù)排列數(shù)公式得出結(jié)論.
解答:解:∵(25-m)(26-m)…(30-m)是6個(gè)連續(xù)自然數(shù)的乘積,最大的為30-m,故(25-m)(26-m)…(30-m)=
A
6
30-m
,
故選C.
點(diǎn)評(píng):本題主要考查排列數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知m,n∈[13,14)∪[17,18],求事件“|m-n|>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意兩個(gè)集合M,N,定義:M-N={x|x∈M且x∉N},M△N=(M-N)∪(N-M),設(shè)M={x|
x-3
1-x
<0
},N={x|y=
2-x
},則M△N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們?cè)谙旅娴谋砀駜?nèi)填寫數(shù)值,先將第1行的所有空格填上1,再把一個(gè)首項(xiàng)為1,公比為q的等比數(shù)列{an}依次填入第一列的空格內(nèi),然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其他空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(Ⅰ)設(shè)第2行的數(shù)依次為b1,b2,b3,…,bn,試用n、q表示b1+b2+b3+…+bn的值;
(Ⅱ)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對(duì)于任意非零實(shí)數(shù)q,總有cm-1+cm+1>2cm成立(其中2≤m≤n-1且m為偶數(shù));
(Ⅲ)能否找到一個(gè)實(shí)數(shù)q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)已知
m
=(Asin
x
3
,A),
n
=(
3
,cos
x
3
),f(x)=
m
n
,且f(
π
4
)=
2

(1)求A的值;
(II)設(shè)α、β∈[0,
π
2
],f(3α+π)=
30
17
,f(3β-
7
2
π
)=-
8
5
,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案