【題目】在某單位的食堂中,食堂每天以元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂某天購進(jìn)了80斤米粉,以(單位:斤)(其中)表示米粉的需求量, (單位:元)表示利潤.

(Ⅰ)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);

(Ⅱ) 表示為的函數(shù);

Ⅲ)根據(jù)直方圖估計(jì)該天食堂利潤不少于760元的概率.

【答案】(1) 平均數(shù)為75.5,眾數(shù)為75,中位數(shù)為75.

(2) .

(3) 該天食堂利潤不少于760元的概率為0.65.

【解析】

由頻率分布直方圖的數(shù)值計(jì)算可得平均數(shù),眾數(shù),中位數(shù)

由題意,當(dāng)時(shí),求出利潤,當(dāng)時(shí),求出利潤,由此能求出關(guān)于的函數(shù)解析式

設(shè)利潤不少于元為事件,利潤不少于元時(shí),即,再根據(jù)直方圖利用概率計(jì)算公式求出對(duì)應(yīng)的概率

(Ⅰ)由頻率分布直方圖知

所以平均數(shù)為75.5,眾數(shù)為75,中位數(shù)為75.

(Ⅱ)一斤米粉的售價(jià)是元.

當(dāng)時(shí),

當(dāng)時(shí),

Ⅲ)設(shè)利潤不少于760元為事件,利潤不少于760元時(shí),即.

解得,即.由直方圖可知,當(dāng)時(shí),

.

故該天食堂利潤不少于760元的概率為0.65.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①;這兩個(gè)條件中任選-一個(gè),補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題.

中,角的對(duì)邊分別為,已知 .

(1);

(2)如圖,為邊上一點(diǎn),,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,動(dòng)點(diǎn)滿足.設(shè)動(dòng)點(diǎn)的軌跡為.

(1)求動(dòng)點(diǎn)的軌跡方程,并說明軌跡是什么圖形;

(2)求動(dòng)點(diǎn)與定點(diǎn)連線的斜率的最小值;

(3)設(shè)直線交軌跡兩點(diǎn),是否存在以線段為直徑的圓經(jīng)過?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐PABCD中,底面ABCD是矩形,且AD2,AB1,PA⊥平面ABCD,EF分別是線段AB、BC的中點(diǎn).

(1)證明:PF⊥FD;

(2)判斷并說明PA上是否存在點(diǎn)G,使得EG∥平面PFD;

(3)PB與平面ABCD所成的角為45°,求二面角APDF的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計(jì)該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:實(shí)數(shù)x滿足,命題:實(shí)數(shù)x滿足

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且),設(shè)),數(shù)列的前項(xiàng)和.

1)求、、的值;

2)利用“歸納—猜想—證明”求出的通項(xiàng)公式;

3)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,CDAD,BCAD,.

(Ⅰ)求證:CDPD;

(Ⅱ)求證:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線方程;

2)若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案