已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S3,S9,S6成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的公比q;
(Ⅱ)證明:a2,a8,a5成等差數(shù)列.
考點(diǎn):等差關(guān)系的確定,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等比數(shù)列的通項(xiàng)公式,建立條件關(guān)系,即可得到結(jié)論.
(2)利用等差數(shù)列的定義進(jìn)行證明即可.
解答: 解:(Ⅰ)由S3,S9,S6成等差數(shù)列,可得2S9=S3+S6
當(dāng)q=1時(shí),即得18a1≠3a1+6a1,不成立.…(3分)
當(dāng)q≠1時(shí),即得
2a1(1-q9)
1-q
=
a1(1-q3)
1-q
+
a1(1-q6)
1-q
,
整理得:2q6-q3-1=0,即2(q32-q3-1=0,
解得:q=1(舍去),或q=-
34
2
.…(7分)
(Ⅱ)證明:由(Ⅰ)知q3+1=2q6,
a2+a5=a1q+a1q4=a1q(1+q3)=a1q•2q6=2a1q7,
2a8=2a1q7,
∴a2+a5=2a8,即a2,a8,a5成等差數(shù)列. …(12分)
點(diǎn)評(píng):本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的應(yīng)用,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓O1:(x-1)2+y2=1和圓O2:x2+(y-3)2=9的位置關(guān)系是( 。
A、相交B、相切C、外離D、內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z∈C,若z2為純虛數(shù),則z在復(fù)平面上的對(duì)應(yīng)點(diǎn)落在( 。
A、實(shí)軸上
B、虛軸上
C、直線y=±x(x≠0)上
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

綿陽市農(nóng)科所研究出一種新的棉花品種,為監(jiān)測(cè)長(zhǎng)勢(shì)狀況.從甲、乙兩塊試驗(yàn)田中各抽取了10株棉花苗,量出它們的株高如下(單位:厘米):
37 21 31 20 29 19 32 23 25 33
10 30 47 27 46 14 26 10 44 46
(Ⅰ)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩塊試驗(yàn)田中棉花棉的株高進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(Ⅱ)從甲、乙兩塊試驗(yàn)田的棉花苗株高在[23,29]中抽3株,求至少各有1株分別屬于甲、乙兩塊試驗(yàn)田的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于(0,3)上的一切實(shí)數(shù)x,不等式(x-2)m<2x-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某競(jìng)賽有A1,A2,B三類題目共10道,其中A1,A2類為難度相同的簡(jiǎn)單題各3道,B類為中檔題共4道,參加比賽的選手從這10道題目中隨機(jī)抽取3道題作答.
(1)求某選手所抽取的3道題中至少有1道B類題的概率;
(2)某選手所抽取的3道題中有X道A1,A2類題,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程
x2
2
+
y2
m
=1表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的不等式4x2-4mx+(4m-3)≥0在R上恒成立,若p∨q為真,?p為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出圖中水平放置的四邊形ABCD的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
x
ex,a,b∈R,且a>0.
(1)若a=2,b=1,求函數(shù)f(x)的極值;
(2)設(shè)g(x)=a(x-1)ex-f(x).
①當(dāng)a=1時(shí),對(duì)任意x∈(0,+∞),都有g(shù)(x)≥1成立,求b的最大值;
②設(shè)g′(x)為g(x)的導(dǎo)函數(shù),若存在x>1,使g(x)+g′(x)=0成立,求
b
a
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案