8.函數(shù)f(x)=x3-3x2+m在區(qū)間[-1,1]上的最大值是2,則常數(shù)m=2.

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值是f(0)=m,則m值可求.

解答 解:f′(x)=3x(x-2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
∴f(x)在[-1,0)遞增,在(0,1]遞減,
∴f(x)max=f(0)=m=2,
故答案為:2

點評 本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,考查了導(dǎo)數(shù)的綜合應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某家公司每月生產(chǎn)兩種布料A和B,所有原料是三種不同顏色的羊毛.下表給出了生產(chǎn)每匹每種布料所需的羊毛量,以及可供使用的每種顏色的羊毛的總量.
羊毛顏色每匹需要/kg供應(yīng)量/kg
布料A布料B
331050
421200
261800
已知生產(chǎn)每匹布料A、B的利潤分別為60元、40元.分別用x、y表示每月生產(chǎn)布料A、B的匹數(shù).
(Ⅰ)用x、y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)如何安排生產(chǎn)才能使得利潤最大?并求出最大的利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足3bcosC=3a-c,則cosB=(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.三棱臺ABC-A1B1C1中,側(cè)棱CC1⊥底面ABC,∠ACB=90°,AC=B1C1=a,BC=2a,AB1與CC1成45°角,D為BC中點,
(1)B1D與平面ABC的位置關(guān)系如何?
(2)求三棱臺的體積;
(3)求A1C1與平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與直線${l_1}:y=\frac{1}{2}x$,${l_2}:y=-\frac{1}{2}x$,過橢圓上一點P作l1,l2的平行線,分別交l1,l2于M,N兩點.若|MN|為定值,則$\sqrt{\frac{a}}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)點P在雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上,雙曲線的左、右焦點分別為F1,F(xiàn)2,若|PF1|=4|PF2|,則雙曲線離心率的取值范圍是(  )
A.$({1,\frac{5}{3}}]$B.(1,2]C.$[{\frac{5}{3},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(x3+x)3(-7+$\frac{1}{{x}^{2}}$)的展開式x3中的系數(shù)為( 。
A.3B.-4C.4D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-2x2+x,將函數(shù)y=|f(x)|的圖象沿著x軸作對稱變換得到函數(shù)y=g(x)的圖象,函數(shù)h(x)=$\left\{\begin{array}{l}g(x),x<1\\ lnx,x≥1\end{array}$,若關(guān)于x的不等式h(x)-kx≤0在R上恒成立,則實數(shù)k的取值范圍是( 。
A.$[{\frac{1}{e^2},1}]$B.$[{\frac{2}{e},1}]$C.$[{\frac{1}{e},1}]$D.[1,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=3sin (2x-$\frac{π}{3}$) 的圖象為C.
①圖象C關(guān)于直線x=$\frac{11}{12}$π對稱;
②函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$) 內(nèi)是增函數(shù);
③由y=3sin 2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到圖象C.
以上三個論斷中,正確論斷的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案