已知直線:x-y+m=0與雙曲線x2-
y2
2
=1交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)在圓x2+y2=5上,則m的值是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:聯(lián)立直線方程和雙曲線方程,化為關(guān)于x的一元二次方程,由根與系數(shù)關(guān)系求得線段AB的中點(diǎn),代入圓x2+y2=5求得m的值.
解答: 解:聯(lián)立
x-y+m=0
x2-
y2
2
=1
,消y得 x2-2mx-m2-2=0,
△=4m2+4(m2+2)=8(m2+1)>0,
∵x1+x2=2m,
∴AB中點(diǎn)的橫坐標(biāo)為
2m
2
=m
,
代入x-y+m=0,得AB中點(diǎn)的縱坐標(biāo)為2m.
∴AB中點(diǎn)(m,2m),
代入圓方程x2+y2=5,得m2+4m2=5,
∴m=±1.
故答案為:±1.
點(diǎn)評(píng):本題考查了雙曲線的簡(jiǎn)單幾何性質(zhì),考查了中點(diǎn)坐標(biāo)公式的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義域?yàn)镈的函數(shù),若存在距離為d的兩條平行直線l l:y=kx+ml和l 2:y=kx+m2(ml<m2),使得當(dāng)x∈D時(shí),kx+m1≤f(x)≤kx+m2恒成立,則稱(chēng)函數(shù)f(x)在(x∈D)有一個(gè)寬度為d的通道.有下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1
;④f(x)=x3+1
其中在[1,+∞)上有一個(gè)通道寬度為1的函數(shù)題號(hào)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

l是平面α外一條直線,過(guò)l作平面β,使α∥β,這樣的β( 。
A、只能作一個(gè)
B、至少可以做一個(gè)
C、不存在
D、至多可以作一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長(zhǎng)為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點(diǎn)E在平面ABC上的射影落在∠ABC的平分線上.
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)求三棱錐B-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從⊙C:x2+y2-6x-8y+24=0外一點(diǎn)P向該圓引切線PT,T為切點(diǎn),且|PT|=|PO|(O為坐標(biāo)原點(diǎn))
(1)|PT|的最小值為多少?
(2)|PT|取得最小值時(shí)點(diǎn)P的坐標(biāo)為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a7+a11=12,則S13等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面a外兩點(diǎn)A、B到平面a的距離分別為1和2,A、B兩點(diǎn)在平面a內(nèi)的射影之間的距離為
3
,求直線AB和平面a所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)左焦點(diǎn)為F,中點(diǎn)為O,若橢圓上任一點(diǎn)P到F的最近距離為1,P到O的最近距離為
3
,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)數(shù)),滿(mǎn)足f(-1)=0,對(duì)于任意實(shí)數(shù)x都有f(x)≥x,并且當(dāng)x∈(0,2)時(shí),f(x)≤
(x+1)2
4
,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案