若函數(shù)f(x)=
x2-kx-k
定義域?yàn)镽,則k的取值范圍是(  )
分析:由題意可知,對任意實(shí)數(shù)x恒有x2-kx-k≥0成立,然后由其判別式小于等于0求解k的取值范圍.
解答:解:因?yàn)閒(x)=
x2-kx-k
定義域?yàn)镽,所以對任意實(shí)數(shù)x恒有x2-kx-k≥0成立,
即△=(-k)2-4×(-k)≤0,解得-4≤k≤0.
所以,使函數(shù)f(x)=
x2-kx-k
定義域?yàn)镽的實(shí)數(shù)k的取值范圍是[-4,0].
故選C.
點(diǎn)評:本題考查了函數(shù)定義域的求法,考查了一元二次不等式的解法,是基礎(chǔ)的運(yùn)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax-1在x∈[1,3]是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x2-4x|-a的零點(diǎn)個(gè)數(shù)為3,則a=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
-x2+2x+3
,則f(x)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2•lga-6x+2與X軸有且只有一個(gè)公共點(diǎn),那么實(shí)數(shù)a的取值范圍是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南二模)下列命題:
①若函數(shù)f(x)=x2-2x+3,x∈[-2,0]的最小值為2;
②線性回歸方程對應(yīng)的直線
?
y
=
?
b
x+
?
a
至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn);
③命題p:?x∈R,使得x2+x+1<0則¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均數(shù)為a,方差為b,則x1+5,x2+5,…,x10+5的平均數(shù)為a+5,方差為b+25.
其中,錯(cuò)誤命題的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案