若f(x)=4log2x+2,則f(2)+f(4)+f(8)=( 。
A、12B、24C、30D、48
考點:函數(shù)的值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:分別將x=2,x=4,x=8代入函數(shù)的解析式求出函數(shù)值即可.
解答: 解:∵f(x)=4log2x+2,
∴f(2)+f(4)+f(8)
=4
log
2
2
+2+4
log
4
2
+2+4
log
8
2
+2
=30.
故選:C.
點評:本題考查了求函數(shù)值問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)“騰籠換鳥”的政策促進了區(qū)內(nèi)環(huán)境改善和產(chǎn)業(yè)轉(zhuǎn)型,空氣質(zhì)量也有所改觀,現(xiàn)從當(dāng)?shù)靥鞖饩W(wǎng)站上收集該地區(qū)近兩年11月份(30天)的空氣質(zhì)量指數(shù)(AQI)(單位:μg/m3)資料如下:(圖1和表1)
2014年11月份AQI數(shù)據(jù)
日期12345678910
AQI895552871247265264648
日期11121314151617181920
AQI583663788997747890117
日期21222324252627282930
AQI1371397763637764655545
表1
2014年11月份AQI數(shù)據(jù)頻率分布表
分組頻數(shù)頻率
[20,40)
 
  
[40,60)
 
  
[60,80)
 
  
[80,100)
 
  
[100,120)
 
  
[120,140]
 
  
表2
(Ⅰ) 請?zhí)詈?014年11月份AQI數(shù)據(jù)的頻率分布表(表2)并完成頻率分布直方圖(圖2);

(Ⅱ) 該地區(qū)環(huán)保部門2014年12月1日發(fā)布的11月份環(huán)評報告中聲稱該地區(qū)“比去年同期空氣質(zhì)量的優(yōu)良率提高了20多個百分點”(當(dāng)AQI<100時,空氣質(zhì)量為優(yōu)良).試問此人收集到的資料信息是否支持該觀點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是g(x)=log3x的反函數(shù),則f(2)=(  )
A、9
B、
1
9
C、log32
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn為其前n項和,若a1=
1
2
,S2=a3,則其公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}各項均不相等,將{an}的項從大到小重新排序后相應(yīng)的項數(shù)構(gòu)成新數(shù)列{pn},稱{pn}為{an}的“序數(shù)列”,例如數(shù)列:a1,a2,a3滿足a1>a3>a2,則其序數(shù)列{pn}為1,3,2;
(1)寫出公差為d(d≠0)的等差數(shù)列a1,a2,…,an的序數(shù)列{pn};
(2)若項數(shù)不少于5項的有窮數(shù)列{bn}、{cn}的通項公式分別是bn=n•(
3
5
)n
(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序數(shù)列與{cn}的序數(shù)列相同,求實數(shù)t的取值范圍;
(3)若有窮數(shù)列{dn}滿足d1=1,|dn+1-dn|=(
1
2
)n
(n∈N*),且{d2n-1}的序數(shù)列單調(diào)遞減,{d2n}的序數(shù)列單調(diào)遞增,求數(shù)列{dn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|lnx|,則函數(shù)y=f(x+1)的大致圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,可以是奇函數(shù)的為( 。
A、f(x)=(x-a)|x|,a∈R
B、f(x)=x2+ax+1,a∈R
C、f(x)=log2(ax-1),a∈R
D、f(x)=ax+cosx,a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x∈R|0<x<2},N={x∈R|x>1},則M∩(∁UN)=(  )
A、[1,2)
B、(1,2)
C、(0,1]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1+ax
1-x
(a>0)為奇函數(shù),函數(shù)g(x)=
2
x2
+b(b∈R)
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)x∈[
1
3
,
1
2
]時,關(guān)于x的不等式f(1-x)≤lgg(x)有解,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案