(理)已知數(shù)列{an}前n項(xiàng)和Sn=-ban+1-
1
(1+b)n
其中b是與n無(wú)關(guān)的常數(shù),且0<b<1,若
limSn
n→∞
存在,則
limSn=
n→∞
1
1
分析:對(duì)等式Sn=-ban+1-
1
(1+b)n
兩邊求極限,因0<b<1,所以
lim
n→∞
1
(1+b)n
=0,又an=Sn-Sn-1,從而求出所求.
解答:解:由Sn=-ban+1-
1
(1+b)n
,及
lim
n→∞
Sn存在,可得  
lim
n→∞
Sn =-b 
lim
n→∞
an +1-
lim
n→∞
1
(1+b)n
,
因0<b<1,所以
lim
n→∞
1
(1+b)n
=0,又an=Sn-Sn-1,故上式可變?yōu)?
lim
n→∞
Sn=-b(
lim
n→∞
Sn-
lim
n→∞
Sn-1)+1,
lim
n→∞
Sn =
lim
n→∞
Sn-1,因此
lim
n→∞
Sn=1
故答案為:1.
點(diǎn)評(píng):本題主要考查數(shù)列的極限,解題的關(guān)鍵是對(duì)整個(gè)等式求極限,有一定的難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿(mǎn)足a1=1,an=
12
an-1+1(n≥2),
(1)求證:數(shù)列{an-2}是等比數(shù)列,并求通項(xiàng)an
(2)求{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an},Sn是其前n項(xiàng)和,Sn=1-an(n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列{bn}的前n項(xiàng)和為T(mén)n,bn=(n+1)an,求Tn;
(3)設(shè)cn=
3an
(2-an)(1-an)
,數(shù)列{cn}的前n項(xiàng)和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}是等差數(shù)列,且a1=-2,a1+a2+a3=-12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求數(shù)列{an(bn+1)}的前n項(xiàng)和Tn的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿(mǎn)足a1=2,前n項(xiàng)和為Sn,an+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿(mǎn)足bn=a2n+a2n+1(n≥1),試求數(shù)列{bn}前3項(xiàng)的和T3;
(2)若數(shù)列{cn}滿(mǎn)足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說(shuō)明理由;
(3)當(dāng)p=
1
2
時(shí),對(duì)任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案