已知直線
x=1+t
y=4-2t
(t∈R),以直角坐標(biāo)系的原點為極點,x軸的非負(fù)半軸為極軸(單位長度不變)的極坐標(biāo)系中,圓的方程為ρ=4cosθ.若圓與直線相交于A、B,則以AB為直徑的圓的面積為
 
考點:參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:先把圓的方程化為直角坐標(biāo)方程,再把直線的參數(shù)方程代入圓的方程,即可求出圓的面積.
解答: 解:圓的方程為ρ=4cosθ,直角坐標(biāo)方程得(x-2)2+y2=4,
把直線
x=1+t
y=4-2t
(t∈R)代入上述圓的方程得(t-1)2+(4-2t)2=4,
化為5t2-18t+13=0,解得t1=
13
5
,t2=1.
由t幾何意義可得|AB|=|t1-t2|=|
13
5
-1|=
8
5

∴以AB為直徑的圓的面積S=π×(
4
5
)2
=
16
25
π.
故答案為:
16
25
π.
點評:正確理解直線參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù).
(1)y=x4-
5
x2

(2)y=xtanx
(3)y=(x+1)(x+2)(x+3)
(4)y=lgx-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|4≤2x<16},B={x|log 
1
2
(x-1)≥-1},求:
(1)A∪B;
(2)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,已知向量
a
=(-1,2),點A(8,0),B(ksinθ,t),(0≤θ≤
π
2
,t∈R)
(1)若
AB
a
,且|
OA
|=|
AB
|,求向量
OB

(2)若向量
AB
與向量
a
共線,當(dāng)k>4,且tsinθ取得最大值為4時,求
OA
OB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列不等式:
1
2
<1
1
2
+
1
6
2

1
2
+
1
6
+
1
12
3
;

則第n個不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校進(jìn)行體質(zhì)抽測,計劃在高中三個年級中共抽取160人,已知高一、高二、高三學(xué)生數(shù)比例為6:5:5,則應(yīng)在高一分配
 
個名額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,垂足分別是D、E,則以A、B為焦點且過D、E的橢圓與雙曲線的離心率分別為e1,e2,則
1
e1
+
1
e2
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y-2x-3=0關(guān)于直線y=x+1對稱的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個棱長為2的正方體,被一個平面截后所得幾何體的三視圖如圖所示,則該幾何體的上底面面積是
 

查看答案和解析>>

同步練習(xí)冊答案