在邊長為2的正方形SG1G2G3中,F(xiàn),E分別是G1G2,G2G3的中點(diǎn),現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1,G2,G3三點(diǎn)重合,重合點(diǎn)記為G,則四面體S-EFG的體積是( 。
分析:根據(jù)題意,在折疊過程中,始終有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,由線面垂直的判定定理,易得SG⊥平面EFG,然后求出四棱錐的體積即可得到選項(xiàng).
解答:精英家教網(wǎng)解:∵在折疊過程中,
始終有SG1⊥G1E,SG3⊥G3F,
即SG⊥GE,SG⊥GF,
所以SG⊥平面EFG.四面體的底面積為:S△EFG=
1
2
GE•GF
,高為SG=2
∴四面體S-EFG的體積:VS-EFG=
1
3
×
1
2
× 1×1×2=
1
3

故選A.
點(diǎn)評(píng):線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,得到折疊后三棱錐的高,考查幾何體的體積的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在邊長為2的正方形ABCD的邊上有動(dòng)點(diǎn)M,從點(diǎn)B開始,沿折線BCDA向A點(diǎn)運(yùn)動(dòng),設(shè)M點(diǎn)運(yùn)動(dòng)的距離為x,△ABM的面積為S.
(1)求函數(shù)S=f(x)的解析式、定義域和值域;
(2)求f[f(3)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)線段EF的長度為1,端點(diǎn)E、F在邊長為2的正方形ABCD的四邊上滑動(dòng).當(dāng)E、F沿著正方形的四邊滑動(dòng)一周時(shí),EF的中點(diǎn)M所形成的軌跡為G,若G圍成的面積為S,則S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省紅河州紅河一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

在邊長為2的正方形ABCD的邊上有動(dòng)點(diǎn)M,從點(diǎn)B開始,沿折線BCDA向A點(diǎn)運(yùn)動(dòng),設(shè)M點(diǎn)運(yùn)動(dòng)的距離為x,△ABM的面積為S.
(1)求函數(shù)S=f(x)的解析式、定義域和值域;
(2)求f[f(3)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在邊長為2的正方形ABCD的邊上有動(dòng)點(diǎn)M,從點(diǎn)B開始,沿折線BCDA向A點(diǎn)運(yùn)動(dòng),設(shè)M點(diǎn)運(yùn)動(dòng)的距離為x,△ABM的面積為S.
(1)求函數(shù)S=f(x)的解析式、定義域和值域;
(2)求f[f(3)]的值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案