(09年朝陽區(qū)統(tǒng)考)(14分)
已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)是準(zhǔn)線上的動點(diǎn),直線交拋物線于兩點(diǎn),若點(diǎn)的縱坐標(biāo)為,點(diǎn)為準(zhǔn)線與軸的交點(diǎn).
(Ⅰ)求直線的方程;
(Ⅱ)求的面積范圍;
(Ⅲ)設(shè),,求證為定值.
解析:(Ⅰ)由題知點(diǎn)的坐標(biāo)分別為,,
于是直線的斜率為,
所以直線的方程為,即為.…………………3分
(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為,
由得,
所以,.
于是.
點(diǎn)到直線的距離,
所以.
因?yàn)?IMG height=15 src='http://thumb.zyjl.cn/pic1/img/20090512/20090512164410018.gif' width=28>且,于是,
所以的面積范圍是. …………………………………9分
(Ⅲ)由(Ⅱ)及,,得
,,
于是,().
所以.
所以為定值. ……………………………………………14分年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年朝陽區(qū)統(tǒng)考)(14分)
已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線與直線垂直.
(Ⅰ)若,試求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且函數(shù)在上單調(diào)遞增,試求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年朝陽區(qū)統(tǒng)考)(13分)
設(shè)數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,點(diǎn)在直線上,.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年朝陽區(qū)統(tǒng)考)(13分)
如圖,在正四棱柱ABCD―A1B1C1D1中,已知AA1=4,AB=2,點(diǎn)E在棱CC1上,且CE=1.
(Ⅰ)求證:BE∥平面AA1D1D;
(Ⅱ)求二面角B―ED―C的大。
(Ⅲ)求證:A1C⊥平面BDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com