對(duì)一些城市進(jìn)行職工人均工資水平x(千元)與居民人均消費(fèi)水平y(tǒng)(千元)統(tǒng)計(jì)調(diào)查后知,y與x具有相關(guān)關(guān)系,滿足回歸方程=0.66x+1.562.若某被調(diào)查城市的居民人均消費(fèi)水平為7.675(千元),則可以估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比約為    %(結(jié)果保留兩個(gè)有效數(shù)字).
83
依題意得,當(dāng)y=7.675時(shí),有0.66x+1.562=7.675,x≈9.262.因此,可以估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比為≈83%.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知下列表格所示的數(shù)據(jù)的回歸直線方程為多,則a的值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)有一個(gè)直線回歸方程為 ,則變量 增加一個(gè)單位時(shí) (      )
A.平均增加1.5個(gè)單位B.平均增加2個(gè)單位
C.平均減少1.5個(gè)單位D.平均減少2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè))
2
3
4
5
加工的時(shí)間y(小時(shí))
2.5
3
4
4.5
由表中數(shù)據(jù)算出線性回歸方程=bx+a中的b≈0.7,試預(yù)測(cè)加工10個(gè)零件需_______小時(shí)(已知a=-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于給定的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù),下列說(shuō)法正確的是(  )
A.都可以分析出兩個(gè)變量的關(guān)系
B.都可以用一條直線近似地表示兩者的關(guān)系
C.都可以作出散點(diǎn)圖
D.都可以用確定的表達(dá)式表示兩者的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)的散點(diǎn)圖分析存在線性相關(guān)關(guān)系,求得其回歸方程=0.85x-85.7,則在樣本點(diǎn)(165,57)處的殘差為(  )
A.54.55B.2.45C.3.45D.111.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)一組樣本數(shù)據(jù)的散點(diǎn)圖分析存在線性相關(guān)關(guān)系,求得其回歸方程,則在樣本點(diǎn)處的殘差為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某車間生產(chǎn)一種玩具,為了要確定加工玩具所需要的時(shí)間,進(jìn)行了10次實(shí)驗(yàn),數(shù)據(jù)如下:
玩具個(gè)數(shù)
2
4
6
8
10
12
14
16
18
20
加工時(shí)間
4
7
12
15
21
25
27
31
37
41
如回歸方程的斜率是,則它的截距是 (  )
A.=11-22;      B.=11-22;      C.=22-11;      D.=22-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面是2×2列聯(lián)表:
 
y1
y2
總計(jì)
x1
a
21
73
x2
22
25
47
總計(jì)
b
46
120
則表中a,b的值分別為(  )
(A)94,72        (B)52,50
(C)52,74        (D)74,52

查看答案和解析>>

同步練習(xí)冊(cè)答案