關(guān)于的方程,給出下列四個題:
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有8個不同的實根。
正確命題的序號為           
①②③④

試題分析:關(guān)于x的方程(x2-1)2-|x2-1|+k=0可化為(x2-1)2-(x2-1)+k=0(x≥1或x≤-1)(1)

或(x2-1)2+(x2-1)+k=0(-1<x<1)(2)
當k=-2時,方程(1)的解為±,方程(2)無解,原方程恰有2個不同的實根
當k=時,方程(1)有兩個不同的實根±,方程(2)有兩個不同的實根±,
即原方程恰有4個不同的實根
當k=0時,方程(1)的解為-1,+1,±,方程(2)的解為x=0,原方程恰有5個不同的實根當k=時,方程(1)的解為±,±,方程(2)的解為±,±,即原方程恰有8個不同的實根,∴四個命題都是真命題,故填寫①②③④,
點評:解決該試題的關(guān)鍵是將方程根的問題轉(zhuǎn)化成函數(shù)圖象的問題,畫出函數(shù)圖象,結(jié)合圖象可得結(jié)論
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)函數(shù)是定義域R上的奇函數(shù),且當時,則當時, ____________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,則的值等于   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)某單位用2 160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2 000平方米的樓房,經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應建為多少層?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義域為R的函數(shù)滿足條件:
;
 ;  ③.
則不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列滿足:,則=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間上為增函數(shù)的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),正實數(shù)滿足,且,若在區(qū)間上的最大值為2,則的值為(  )
A.    B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0,②f()=1,③對任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。

查看答案和解析>>

同步練習冊答案