8.已知點P位橢圓C:$\frac{x^2}{4}+\frac{y^2}{9}=1$上任意一點,則P到直線l:2x-y=12的距離的最小值為( 。
A.$\frac{7}{5}$B.$\frac{7}{5}\sqrt{5}$C.$\frac{17}{5}$D.$\frac{17}{5}\sqrt{5}$

分析 設出與直線l:2x-y=12平行的直線為2x-y+m=0,聯(lián)立直線方程與橢圓方程,由判別式為0求得m,得到與橢圓相切且與直線l:2x-y=12平行的直線方程,再由兩平行線間的距離公式求解.

解答 解:設與直線l:2x-y=12平行的直線為2x-y+m=0,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1}\\{2x-y+m=0}\end{array}\right.$,得25x2+16mx+4m2-36=0.
由△=(16m)2-100(4m2-36)=0,得m=±5.
∴當m=-5時,直線2x-y-5=0與橢圓C:$\frac{x^2}{4}+\frac{y^2}{9}=1$的切點到直線l:2x-y=12的距離最。
最小值為$\frac{|-12+5|}{\sqrt{5}}=\frac{7\sqrt{5}}{5}$.
故選:B.

點評 本題考查橢圓的簡單性質,考查了直線與橢圓位置關系的應用,體現(xiàn)了數(shù)學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=|x-1|-2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{a}^{2}{+c}^{2}}{2}$+b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.給出下列命題:
①“若a≥0,則x2+x-a=0有實根”的逆否命題為真命題:
②命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是a≥4;
③命題“?x∈R,使得x2-2x+1<0”的否定是真命題;
④命題p:函數(shù)y=ex+e-x為偶函數(shù);命題q:函數(shù)y=ex-e-x在R上為增函數(shù),則p∧(?q)為真命題.期中正確命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據如下:
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(1)求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試預測加工10個零件需要多少小時?
(3)此回歸方程擬合效果如何?
零件個數(shù)x(個)2345
加工時

]y(小時)
2.5344.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線f(x)=x2-1上兩點A(2,3),B(2+△x,3△y),當△x=0.1,求割線AB斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設p:方程x2+mx+1=0有兩個不等的實根,q:方程2x2+2(m-2)x+$\frac{1}{2}$=0無實根,當“p或q為真,p且q為假”時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.給定兩個命題,命題p:對任意實數(shù)x都有ax2>-ax-1恒成立,命題q:關于x的方程x2-x+a=0有實數(shù)根.若“p或q”為真命題,“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥0}\\{y≥x-2}\\{y≥2-x}\end{array}\right.$,則z=2x+y的最大值為( 。
A.10B.8C.$\frac{10}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果方程x2+ky2=2表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是( 。
A.(1,+∞)B.(1,2)C.($\frac{1}{2}$,1)D.(0,1)

查看答案和解析>>

同步練習冊答案