【題目】定義運(yùn)算:對(duì)于任意,(等式的右邊是通常的加減乘運(yùn)算).若數(shù)列的前n項(xiàng)和為,且對(duì)任意都成立.

1)求的值,并推導(dǎo)出用表示的解析式;

2)若,令,證明數(shù)列是等差數(shù)列;

3)若,令,數(shù)列滿足,求正實(shí)數(shù)b的取值范圍.

【答案】1,;(2)證明見解析;(3

【解析】

1)直接利用信息的應(yīng)用和賦值法的應(yīng)用求出函數(shù)的關(guān)系式的表達(dá)式;

2)利用構(gòu)造法對(duì)和數(shù)列的關(guān)系式進(jìn)行變換,進(jìn)一步利用定義求出數(shù)列的通項(xiàng)公式;
3)利用(1)和(2)的結(jié)論,進(jìn)一步函數(shù)的單調(diào)性和極限的應(yīng)用求出參數(shù)的取值范圍.

1)∵,

,得,

當(dāng)時(shí),有
,


2,
,整理得

∴數(shù)列是以首項(xiàng)為1、公差為的等差數(shù)列.
3)結(jié)合(1),且,
,即

當(dāng)時(shí),,此時(shí),,總是滿足
當(dāng)時(shí),,此時(shí),是等比數(shù)列.

時(shí),數(shù)列是單調(diào)遞增數(shù)列,且時(shí),,不滿足
時(shí),, 數(shù)列是單調(diào)遞減數(shù)列,故,同樣恒有成立;
時(shí),,數(shù)列是單調(diào)遞增數(shù)列,
,即此時(shí)當(dāng)時(shí),滿足
綜上,所求實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校象棋社團(tuán)組織中國象棋比賽,采用單循環(huán)賽制,即要求每個(gè)參賽選手必須且只須和其他選手各比賽一場(chǎng),勝者得分,負(fù)者得分,平局兩人各得分.若冠軍獲得者得分比其他人都多,且獲勝場(chǎng)次比其他人都少,則本次比賽的參賽人數(shù)至少為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)是函數(shù)的一個(gè)極值點(diǎn),試求的單調(diào)區(qū)間;

(2),是否存在實(shí)數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩鐵路線垂直相交于站,若已知千米,甲火車從站出發(fā),沿方向以千米小時(shí)的速度行駛,同時(shí)乙火車從站出發(fā),沿方向,以千米小時(shí)的速度行駛,至站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長忽略不計(jì)).

1)求甲、乙兩車的最近距離(用含的式子表示);

2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時(shí)所用時(shí)間為小時(shí),問為何值時(shí)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若,求曲線處的切線方程;

(2)設(shè)函數(shù)若至少存在一個(gè),使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201935日,國務(wù)院總理李克強(qiáng)作出的政府工作報(bào)告中,提到要懲戒學(xué)術(shù)不端,力戒學(xué)術(shù)不端,力戒浮躁之風(fēng).教育部2014年印發(fā)的《學(xué)術(shù)論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)術(shù)論文送3位同行專家進(jìn)行評(píng)議,3位專家中有2位以上(含3位)專家評(píng)議意見為不合格的學(xué)術(shù)論文,將認(rèn)定為存在問題學(xué)術(shù)論文.有且只有1位專家評(píng)議意見為不合格的學(xué)術(shù)論文,將再送另外2位同行專家(不同于前3位專家)進(jìn)行復(fù)評(píng),2位復(fù)評(píng)專家中有1位以上(含1位)專家評(píng)議意見為不合格的學(xué)術(shù)論文,將認(rèn)定為存在問題學(xué)術(shù)論文.設(shè)每篇學(xué)術(shù)論文被每位專家評(píng)議為不合格的概率均為,且各篇學(xué)術(shù)論文是否被評(píng)議為不合格相互獨(dú)立.

1)若,求抽檢一篇學(xué)術(shù)論文,被認(rèn)定為存在問題學(xué)術(shù)論文的概率;

2)現(xiàn)擬定每篇抽檢論文不需要復(fù)評(píng)的評(píng)審費(fèi)用為900元,需要復(fù)評(píng)的總評(píng)審費(fèi)用1500元;若某次評(píng)審抽檢論文總數(shù)為3000篇,求該次評(píng)審費(fèi)用期望的最大值及對(duì)應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)設(shè)橢圓與雙曲線有相同的焦點(diǎn)、是橢圓與雙曲線的公共點(diǎn),且△的周長為6,求橢圓的方程;我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為盾圓;

2)如圖,已知盾圓的方程為,設(shè)盾圓上的任意一點(diǎn)的距離為,到直線的距離為,求證:為定值;

3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為盾圓,設(shè)過點(diǎn)的直線與盾圓交于兩點(diǎn),,,且),試用表示,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中.

1)若,寫出的單調(diào)區(qū)間:

2)若函數(shù)恰有三個(gè)不同的零點(diǎn),且這些零點(diǎn)之和為-2,求a、b的值;

3)若函數(shù)上有四個(gè)不同零點(diǎn),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案