∥ |
. |
1 |
2 |
∥ |
. |
1 |
2 |
∥ |
. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、
PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。
【解析】本試題主要考查了線面平行和線線垂直的運(yùn)用,以及線面角的求解的綜合運(yùn)用
第一問中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn) ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO ∴ EF∥平面PAD.
第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
第三問中,若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°
證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………① 在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD
∵ EF Ì 平面EFO ∴ EF∥平面PAD.
(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
(3)若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又 ∵ FO⊥平面AC ∴ △FOE是直角三角形 ∴ ÐFEO=45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
己知在銳角ΔABC中,角所對(duì)的邊分別為,且
(I )求角大小;
(II)當(dāng)時(shí),求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。
21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實(shí)數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說明理由;
(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com