已知PA⊥矩形ABCD所在平面,PA=AD,M、N分別是AB、PC的中點(diǎn).
(1)求PD與平面ABCD所成的角;
(2)求證:MN∥平面PAD;
(3)求證:面PMC⊥面PCD.
分析:(1)利用線面垂直的性質(zhì)和線面角的定義、等腰直角三角形的性質(zhì)即可得出;
(2)利用三角形的中位線定理、平行四邊形的判定和性質(zhì)、線面平行的判定定理即可得出;
(3)利用定義三角形的性質(zhì)、線面和面面垂直的判定和性質(zhì)定理即可得出.
解答:解:(1)∵PA⊥平面ABCD,∴∠PDA是PD與平面ABCD所成的角,PA⊥AD.
∵PA=AD,∴∠PDA=45°.
∴PD與平面ABCD所成的角為45°.
(2)取PD的中點(diǎn)E,連接AE,EN.
由三角形的中位線定理可得:EN
.
1
2
CD

又∵AM
.
=
1
2
CD
,∴EN
.
AM

∴四邊形AMNE為平行四邊形,
∴MN∥AE.
而AE?平面PAD,MN?平面PAD.
∴MN∥平面PAD.
(3)由(2)可知:PE=ED.
又∵PA=AD,∴AE⊥PD.
∵PA⊥平面ABCD,∴PA⊥CD.
又∵CD⊥AD,AD∩PA=A,
∴CD⊥平面PAD,∴CD⊥AE.
∵PD∩CD=D,
∴AE⊥平面PCD.
又∵M(jìn)N∥AE,∴MN⊥平面PCD.
∵M(jìn)N?平面PMC,
∴平面PMC⊥平面PCD.
點(diǎn)評(píng):熟練掌握線面垂直的性質(zhì)和線面角的定義、等腰直角三角形的性質(zhì)、三角形的中位線定理、平行四邊形的判定和性質(zhì)、線面平行的判定定理、等腰三角形的性質(zhì)、線面和面面垂直的判定和性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、

PC的中點(diǎn).

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。

【解析】本試題主要考查了線面平行和線線垂直的運(yùn)用,以及線面角的求解的綜合運(yùn)用

第一問中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點(diǎn)  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大小;

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù)

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案