13.已知在直角坐標(biāo)系xOy中,極點(diǎn)與坐標(biāo)原點(diǎn)O重合,極軸與x軸正半軸重合,直線l的極坐標(biāo)方程為ρsinθ-4ρcosθ+2=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R).
(1)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,將曲線的參數(shù)方程化為普通方程;
(2)若點(diǎn)A是直線l上的一個(gè)動點(diǎn),點(diǎn)B是曲線C上的一個(gè)動點(diǎn),求|AB|的最小值.

分析 (1)直線l的極坐標(biāo)方程為ρsinθ-4ρcosθ+2=0,利用互化公式可得直角坐標(biāo)方程.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R),消去參數(shù)t可得普通方程.
(2)設(shè)B(t,4t2),可得點(diǎn)B到直線l的距離d=$\frac{4(t-\frac{1}{2})^{2}+1}{\sqrt{17}}$,利用二次函數(shù)的單調(diào)性即可得出.

解答 解:(1)直線l的極坐標(biāo)方程為ρsinθ-4ρcosθ+2=0,
可得直角坐標(biāo)方程:y-4x+2=0.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R),
消去參數(shù)t可得普通方程:y=4x2
(2)設(shè)B(t,4t2),
可得點(diǎn)B到直線l的距離d=$\frac{|4{t}^{2}-4t+2|}{\sqrt{17}}$=$\frac{4(t-\frac{1}{2})^{2}+1}{\sqrt{17}}$≥$\frac{\sqrt{17}}{17}$,
當(dāng)且僅當(dāng)t=$\frac{1}{2}$時(shí)取等號.
此時(shí)B$(\frac{1}{2},1)$,
此時(shí)|AB|取最小值是$\frac{\sqrt{17}}{17}$.

點(diǎn)評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=|lnx|,關(guān)于x的不等式f(x)-f(x0)≥c(x-x0)的解集為(0,+∞),c為常數(shù),當(dāng)x0=1時(shí),c的取值范圍是[-1,1];當(dāng)x0=$\frac{1}{2}$時(shí),c的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線y=x-b與曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π])有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)b的取值范圍為(  )
A.(2-$\sqrt{2}$,1)B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.(2-$\sqrt{2}$,2+$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C;x2+y2+6x-2y+k=0,直線l:2x-y+2=0.
(1)求實(shí)數(shù)k的取值范圍;
(2)若圓C與直線l交于A,B兩點(diǎn),且|AB|=2,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=-2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}{x=5+\sqrt{3}t}\\{y=-2+t}\end{array}\right.$(t為參數(shù))表示的是同一曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,在正方體ABCD-A1B1C1D1中,M,N,P分別是棱CC1,BC,A1B1上的點(diǎn),若∠B1MN=90°.則∠PMN的大小是( 。
A.等于90°B.小于90°C.大于90°D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.5個(gè)人排成一排,若A、B、C三人左右順序一定,那么不同排法有( 。
A.$A_5^5$B.$A_3^3•A_3^3$C.$\frac{A_5^5}{A_3^3}$D.$A_3^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的單調(diào)遞減區(qū)間為(-∞,0)和(0,+∞).
(1)求實(shí)數(shù)b的值;
(2)當(dāng)x>0時(shí),f2(x)≤x-2ex,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知在△ABC中,a+b=$\sqrt{3}$,A=$\frac{π}{3}$,B=$\frac{π}{4}$,則a的值為3($\sqrt{3}$-$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊答案