精英家教網 > 高中數學 > 題目詳情

設函數其中b為常數

(1)當時,判斷函數在定義域上的單調性

(2)若函數有極值點,求b的取值范圍,以及的極值點

(1)函數在定義域上是單調遞增的(2)略


解析:

(1)由題意

        

          函數在定義域上是單調遞增的

(2)①由(1)得當時,函數無極值點

     ②當時,有兩個相同的解

     但當

     函數上無極值點

     ③當有兩個不同解

     

    

0

+

極小值

由上表可知有唯一極值點

+

0

0

+

極大值

極小值

有一個極大值點和一個極小值點。

綜上所述:當且僅當有極值點。

有唯一的極小值點

有一個極大值點和一個極小值點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=(x-1)2+blnx,其中b為常數.
(1)當b>
1
2
時,判斷函數f(x)在定義域上的單調性;
(2)若函數f(x)的有極值點,求b的取值范圍及f(x)的極值點;
(3)求證對任意不小于3的正整數n,不等式
1
n2
<ln(n+1)-lnn<
1
n
都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=(x-1)2+blnx,其中b為常數.
(1)當b>
1
2
時,判斷函數f(x)在定義域上的單調性;
(2)b≤0時,求f(x)的極值點;
(3)求證:對任意不小于3的正整數n,不等式ln(n+1)-lnn>
1
n2
都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2003•東城區(qū)二模)某城市為了改善交通狀況,需進行路網改造.已知原有道路a個標段(注:1個標段是指一定長度的機動車道),擬增建x個標段的新路和n個道路交叉口,n與x滿足關系n=ax+b,其中b為常數.設新建1個標段道路的平均造價為k萬元,新建1個道路交叉口的平均造價是新建1個標段道路的平均造價的β倍(β≥1),n越大,路網越通暢,記路網的堵塞率為μ,它與β的關系為μ=
12(1+β)

(Ⅰ)寫出新建道路交叉口的總造價y(萬元)與x的函數關系式:
(Ⅱ)若要求路網的堵塞率介于5%與10%之間,而且新增道路標段為原有道路標段數的25%,求新建的x個標段的總造價與新建道路交叉口的總造價之比P的取值范圍;
(Ⅲ)當b=4時,在(Ⅱ)的假設下,要使路網最通暢,且造價比P最高時,問原有道路標段為多少個?

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=blnx-(x-1)2,其中b為常數.
(Ⅰ)若b=4,求函數f(x)的單調遞減區(qū)間;
(II)若函數f(x)有極值點,求b的取值范圍及f(x)的極值點;
(Ⅲ) 證明:對任意不小于3的正整數n,不等式ln(n+1)-lnn>
1n2
都成立.

查看答案和解析>>

同步練習冊答案