【題目】兩城市和相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場(chǎng),其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場(chǎng)對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場(chǎng)建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場(chǎng)對(duì)城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說(shuō)明理由;
【答案】(1);
(2)存在,該點(diǎn)到城市A的距離時(shí),總影響度最;
【解析】
(1)根據(jù)“垃圾處理場(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為”,建立函數(shù)模型:,再根據(jù)當(dāng)時(shí),,求得即可.
(2)總影響度最小,即為:求的最小值時(shí)的狀態(tài),令,將函數(shù)轉(zhuǎn)化為:,再用基本不等式求解.
(1)由題意得,
又當(dāng)時(shí),,
,.
(2),
令,則,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,
弧上存在一點(diǎn),使建在此處的垃圾處理場(chǎng)對(duì)城和城的總影響度最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)上是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差。
(i)若某用戶從該企業(yè)購(gòu)買(mǎi)了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求;
(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在之外的產(chǎn)品,就認(rèn)為這一天的生產(chǎn)過(guò)程中可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查下。下面的莖葉圖是檢驗(yàn)員在一天內(nèi)抽取的15個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查。
附:,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開(kāi)始,高考物理、化學(xué)等六門(mén)選考科目的考生原始成績(jī)從高到低劃分為八個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校級(jí)學(xué)生共人,以期末考試成績(jī)?yōu)樵汲煽?jī)轉(zhuǎn)換了本校的等級(jí)成績(jī),為學(xué)生合理選科提供依據(jù),其中物理成績(jī)獲得等級(jí)的學(xué)生原始成績(jī)統(tǒng)計(jì)如下
成績(jī) | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)求物理獲得等級(jí)的學(xué)生等級(jí)成績(jī)的平均分(四舍五入取整數(shù));
(2)從物理原始成績(jī)不小于分的學(xué)生中任取名同學(xué),求名同學(xué)等級(jí)成績(jī)不相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開(kāi)始,高考物理、化學(xué)等六門(mén)選考科目的考生原始成績(jī)從高到低劃分為八個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則分別轉(zhuǎn)換到八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校級(jí)學(xué)生共人,以期末考試成績(jī)?yōu)樵汲煽?jī)轉(zhuǎn)換了本校的等級(jí)成績(jī),為學(xué)生合理選科提供依據(jù),其中物理成績(jī)獲得等級(jí)的學(xué)生原始成績(jī)統(tǒng)計(jì)如下
成績(jī) | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)從物理成績(jī)獲得等級(jí)的學(xué)生中任取名,求恰好有名同學(xué)的等級(jí)分?jǐn)?shù)不小于的概率;
(2)待到本級(jí)學(xué)生高考結(jié)束后,從全省考生中不放回的隨機(jī)抽取學(xué)生,直到抽到名同學(xué)的物理高考成績(jī)等級(jí)為或結(jié)束(最多抽取人),設(shè)抽取的學(xué)生個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望(注: ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽(yáng)兩魚(yú)互抱在一起,因而也被稱為“陰陽(yáng)魚(yú)太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個(gè)圖形是一個(gè)圓形,其中黑色陰影區(qū)域在軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是;②當(dāng)時(shí),直線與黑色陰影部分有公共點(diǎn);③當(dāng)時(shí),直線與黑色陰影部分有兩個(gè)公共點(diǎn).其中所有正確結(jié)論的序號(hào)是( )
A.①B.①②C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<)的部分圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對(duì)于任意的x∈[0,m],f(x)≥1恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,底面是正三角形,側(cè)棱底面.D,E分別是邊BC,AC的中點(diǎn),線段與交于點(diǎn)G,且,.
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com