(本小題滿分12分)
如圖,
與
都是邊長為2的正三角形,
平面
平面
,
平面
,
.
(1)求點(diǎn)
到平面
的距離;
(2)求平面
與平面
所成二面角的正弦值.
(1)
(2)
解法一:(1)等體積法.
取
CD中點(diǎn)
O,連
OB,
OM,則
OB=
OM=
,
OB⊥
CD,
MO⊥
CD.
又平面
平面
,則
MO⊥平面
,所以
MO∥
AB,
MO∥平面
ABC.
M、
O到平面
ABC的距離相等.
作
OH⊥
BC于
H,連
MH,則
MH⊥
BC.
求得
OH=
OC•=
,
MH=
.
設(shè)點(diǎn)
到平面
的距離為
d,由
得
.
即
,
解得
.
(2)延長
AM、
BO相交于
E,連
CE、
DE,
CE是平面
與平面
的交線.
由(1)知,
O是
BE的中點(diǎn),則
BCED是菱形.
作
BF⊥
EC于
F,連
AF,則
AF⊥
EC,∠
AFB就是二面角
A-
EC-
B的平面角,設(shè)為
.
因?yàn)椤?i>BCE=120°,所以∠
BCF=60°.
,
,
.
則所求二面角的正弦值為
解法二:取
CD中點(diǎn)
O,連
OB,
OM,則
OB⊥
CD,
OM⊥
CD.又平面
平面
,則
MO⊥平面
.
取
O為原點(diǎn),直線
OC、
BO、
OM為
x軸、y軸、
z軸,建立空間直角
坐標(biāo)系如圖.
OB=
OM=
,則各點(diǎn)坐標(biāo)分別為
C(1,0,0),
M(0,0,
),
B(0,
,0),
A(0,-
,
).
(1)設(shè)
是平面
MBC的法向量,則
,
.
由
得
;
由
得
.
取
.
,則
.
(2)
,
.
設(shè)平面
ACM的法向量為
,由
得
解得
,
,取
.又平面
BCD的法向量為
.
所以
,
設(shè)所求二面角為
,則
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2DC,F是BE的中點(diǎn),求證:(1) FD∥平面ABC; (2)FD⊥平面ABE; (3) AF⊥平面EDB.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,直三棱柱
A1B1C1-
ABC中,
C1C=
CB=
CA=2,
AC⊥
CB.
D、E分別為棱
C1C、
B1C1的中點(diǎn).
(Ⅰ)求
A1B與平面
A1C1CA所成角的大。
(Ⅱ)求二面角
B-
A1D-
A的大;
(Ⅲ)試在線段
AC上確定一點(diǎn)
F,使得
EF⊥平面
A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
右圖是一個(gè)無蓋的正方體盒子展開后的平面圖,
是展開圖上的三點(diǎn),則在正方形盒子中,
的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖:已知矩形ABCD,PA
平面ABCD,M、N分別是AB、PC的中點(diǎn)
(1)求證:MN∥平面PAD
(2)求證: MN
CD.
(3)若
PDA=
求證:MN
平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H為BC的中點(diǎn),
(Ⅰ)求證:FH∥平面EDB;
(Ⅱ)求證:AC⊥平面EDB;
(Ⅲ)求四面體B—DEF的體積;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
A、B是半徑為R的球O的球面上兩點(diǎn),它們的球面距離為
,則過A、B的平面中,與球心的最大距離是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)正方體的棱長為2 ,一個(gè)球內(nèi)切于該正方體。則這個(gè)球的體積是 。
查看答案和解析>>