分析 (Ⅰ)根據(jù)題意,求出f(x)的解析式,利用三角函數(shù)的圖象與性質求出f(x)的單調遞減區(qū)間;
(Ⅱ)由f(A)=-1得到A的值,由a=$\sqrt{7}$,結合余弦定理得①,由向量$\overrightarrow{m}$=(3,sinB)與向量$\overrightarrow{n}$=(2,sinC)共線,結合正弦定理得②,聯(lián)立①②得b,c的值,再由三角形的面積公式計算得答案.
解答 解:(Ⅰ)$f(x)=\overrightarrow a•\overrightarrow b=(2cosx,-\sqrt{3}sin2x)•(cosx,1)$
=$2{cos^2}x-\sqrt{3}sin2x=cos2x-\sqrt{3}sin2x+1=1-2sin(2x-\frac{π}{6})$,
令$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ(k∈z)$,
解得:$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ(k∈z)$.
∴函數(shù)y=f(x)的單調遞減區(qū)間為$[-\frac{π}{6}+kπ,\frac{π}{3}+kπ](k∈z)$;
(Ⅱ)∵f(A)=-1,
∴$1-2sin(2A-\frac{π}{6})=-1$,即$sin(2A-\frac{π}{6})=1$.
∴$2A-\frac{π}{6}=\frac{π}{2}+2kπ(k∈z)$.
∴$A=\frac{π}{3}+kπ(k∈z)$.
又∵0<A<π,∴$A=\frac{π}{3}$.
∵$a=\sqrt{7}$,
∴由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc=7 ①
∵向量$\overrightarrow m=(3,sinB)$與$\overrightarrow n=(2,sinC)$共線,
∴2sinB=3sinC.
由正弦定理得2b=3c ②
由①②得b=3,c=2.
∴${S_{△ABC}}=\frac{1}{2}×2×3×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$.
點評 本題考查了平面向量的應用問題以及三角函數(shù)的圖象與性質的應用問題,也考查了三角函數(shù)的余弦定理和正弦定理的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3} | B. | {2,4} | C. | {2,3,4} | D. | {3,4} |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com