2.函數(shù)y=$\frac{1}{\sqrt{\frac{9}{x+4}-1}}$的定義域為集合A,集合B={x||x+2|+|x-2|>8}.
(1)求集合A、B;
(2)求B∩∁A.

分析 (1)根據(jù)函數(shù)y的解析式求出定義域得出集合A,利用絕對值的定義求出集合B,
(2)根據(jù)補集與交集的定義進行計算即可.

解答 解:(1)函數(shù)y=$\frac{1}{\sqrt{\frac{9}{x+4}-1}}$的定義域為集合A,
∴$\frac{9}{x+1}$-1>0,化簡得$\frac{x-8}{x+1}$<0,解得-1<x<8,
∴A={x|-1<x<8};
集合B={x||x+2|+|x-2|>8},
當x≥2時,x+2+x-2>8,解得x>4,
當-2<x<2是,(x+2)-(x-2)>8,無解;
當x≤-2時,-(x+2)-(x-2)>8,解得x<-4;
∴B={x|x<-4或x>4};
(2)∁UA={x|x≤-1或x≥8},
∴B∩∁A={x|x<-4或x≥8}.

點評 本題考查了函數(shù)定義域的求法與絕對值不等式的解法問題,也考查了補集與交集的定義和運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標系中,$\overrightarrow{OA}$=(1,4),$\overrightarrow{OB}$=(-3,1),且$\overrightarrow{OA}$與$\overrightarrow{OB}$在直線l方向向量上的投影的長度相等,若直線l的傾斜角為鈍角,則直線l的斜率是-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log4(4x+1)-$\frac{1}{2}$x.
(1)試判斷函數(shù)f(x)的奇偶性并證明;
(2)設(shè)g(x)=log4(a•2x-$\frac{4}{3}$a),若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.集合A={x|x2-3x-4<0,x∈Z}用列舉法表示為{0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x2-ax+2,若對任意x∈[1,+∞),f(x)>0恒成立,則實數(shù)a的取值范圍(-∞,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)直線l的方程為2x+(k-3)y-2k+6=0(k≠3),若直線l在x軸、y軸上截距之和為0,則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x3+x+3的零點所在的區(qū)間是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x+1|,g(x)=|3x-a|(a∈R).
(Ⅰ)當a=2時,解不等式:f(x)+g(x)>x+6;
(Ⅱ)若關(guān)于x的不等式3f(x)+2g(x)≥6在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|k+1≤x≤2k},B={x|1≤x≤3},且A∪B=B,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案