給出下列四個(gè)命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③將4個(gè)不同的小球全部放入3個(gè)不同的盒子,使得每個(gè)盒子至少放入1個(gè)球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對(duì)稱變換,再將所得的圖象關(guān)于y軸做對(duì)稱變換,再將所得的圖象沿x軸向左平移1個(gè)單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號(hào)是    .(請(qǐng)寫出所有真命題的序號(hào))
【答案】分析:對(duì)于①:“向量a,b的夾角為銳角”的充要條件是“a•b>0,且cos<a,b>≠1;
對(duì)于②:函數(shù)f(x)=lgx為上凸函數(shù),故為真命題;
對(duì)于③:將4個(gè)不同的小球全部放入3個(gè)不同的盒子,使得每個(gè)盒子至少放入1個(gè)球,共有C42A33=36種不同的放法,故為假命題;
對(duì)于④:記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對(duì)稱變換,再將所得的圖象關(guān)于y軸做對(duì)稱變換,再將所得的圖象沿x軸向右平移1個(gè)單位,即得到y(tǒng)=f-1[-(x-1)]=f-1(1-x)的圖象,∴④為假命題.
綜上,只有②是真命題.
解答:解:∵“向量a,b的夾角為銳角”的充要條件是“a•b>0,且cos<a,b>≠1”,∴①為假命題;
∵函數(shù)f(x)=lgx為上凸函數(shù),,∴對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,都有,∴②為真命題;
∵將4個(gè)不同的小球全部放入3個(gè)不同的盒子,使得每個(gè)盒子至少放入1個(gè)球,共有C42A33=36種不同的放法,
∴③為假命題;
∵記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對(duì)稱變換,再將所得的圖象關(guān)于y軸做對(duì)稱變換,再將所得的圖象沿x軸向右平移1個(gè)單位,即得到y(tǒng)=f-1[-(x-1)]=f-1(1-x)的圖象,故為假命題.
點(diǎn)評(píng):本題的考點(diǎn)是命題的真假判斷與應(yīng)用,主要考查命題真假判斷,涉及向量知識(shí)、函數(shù)知識(shí)、排列組合知識(shí)及圖象的變換,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案