分析 設(shè)a-b=p,b-c=q,則a-c=p+q,那么不等式轉(zhuǎn)化為$\frac{2}{p}+\frac{1}{q}≥\frac{m}{q+p}$,根據(jù)不等式的性質(zhì)即可得解.
解答 解:法一:由題意,a>b>c,a-b=p>0,b-c=q>0,則a-c=p+q>0,那么不等式轉(zhuǎn)化為$\frac{2}{p}+\frac{1}{q}≥\frac{m}{q+p}$,
$\frac{2}{p}+\frac{1}{q}≥\frac{m}{q+p}$不等式轉(zhuǎn)化為$\frac{2{q}^{\;}+p}{qp}≥\frac{m}{q+p}$,
可得:$\frac{2{q}^{2}+3pq+{p}^{2}}{pq}≥m$
即$\frac{2q}{p}+\frac{p}{q}+3$$≥3+2\sqrt{\frac{2q}{p}×\frac{p}{q}}=3+2\sqrt{2}$.(當(dāng)且僅當(dāng)$\sqrt{2}$q=p時(shí)取等號(hào))
∴實(shí)數(shù)m的最大值為$3+2\sqrt{2}$.
法二:由題意,a-b>0,b-c>0,a-c>0,
∴$\frac{2}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$轉(zhuǎn)化為:$\frac{2(a-c)}{a-b}+\frac{a-c}{b-c}≥m$.
可得:$\frac{2(a-b+b-c)}{a-b}+\frac{a-b+b-c}{b-c}≥m$.
分離:$2+\frac{2(b-c)}{a-b}+1+\frac{a-b}{b-c}≥$3+2$\sqrt{2}$.(當(dāng)且僅當(dāng)(a-b)=$\sqrt{2}$(b-c)時(shí)取等號(hào))
∴實(shí)數(shù)m的最大值為3$+2\sqrt{2}$.
點(diǎn)評(píng) 本題考查了構(gòu)造思想和基本不等式的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 1 | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6道 | B. | 5 道 | C. | 4道 | D. | 3道 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 0 | C. | 2 | D. | $2\sqrt{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com