15.?dāng)?shù)列{an}是等比數(shù)列,滿足a2=2,a2+a4+a6=14,則a6=8.

分析 由等比數(shù)列基本量運(yùn)算可知q2=2,因此a6=8.

解答 解:設(shè)公比為q,a2=2,a2+a4+a6=14,
則2+2q2+2q4=14,
解得q2=2,
∴a6=2q4=8,
故答案為:8.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知異面直線l1,l2,點(diǎn)A是直線l1上的一個(gè)定點(diǎn),過l1,l2分別引互相垂直的兩個(gè)平面α,β,設(shè)l=α∩β,P為點(diǎn)A在l的射影,當(dāng)α,β變化時(shí),點(diǎn)P的軌跡是( 。
A.B.兩條相交直線C.球面D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-a|-|x-4|,a∈R.
(Ⅰ)當(dāng)a=-1時(shí),求不等式f(x)≥4的解集;
(Ⅱ)若?x∈R,|f(x)|≤2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=xln|x|+1,則f(x)的極大值與極小值之和為(  )
A.0B.1C.$2-\frac{2}{e}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=2$\sqrt{3}$,如圖2.
(1)求證:FA∥平面BC'D;
(2)求平面ABD與平面FBC'所成角的余弦值;
(3)在線段AD上是否存在一點(diǎn)M,使得C'M⊥平面FBC?若存在,求$\frac{AM}{AD}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-asinx-1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M$(1,\frac{3}{2})$在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P(-4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間[0,1]內(nèi)隨機(jī)取兩個(gè)數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實(shí)根的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由直線$y=-x+\frac{5}{2}$和曲線$y=\frac{1}{x}$圍成的封閉圖形的面積為$\frac{15}{8}$-2ln2.

查看答案和解析>>

同步練習(xí)冊答案