(本小題滿分12分)
已知函數(shù),,且函數(shù)在處取得極值。
(1)求的解析式與單調(diào)區(qū)間;
(2)是否存在實數(shù),對任意的,都存在,使得成立?若存在,求出實數(shù)的取值范圍;若不存在,說明理由。
(1);,遞減區(qū)間為。
(2)。
【解析】
試題分析:(1) 解:,得,
且,,則 ---------------3分
; 遞減區(qū)間為 ----------6分
(II)由(1)得
x |
-1 |
2 |
|||||
|
+ |
0 |
- |
0 |
+ |
|
|
增 |
減 |
增 |
所以當時,, ---------9分
假設對任意的都存在使得成立,
設的最大值為T,最小值為t,則,
又,所以當時
,
且, .
綜上, -----------12分
考點:本題考查利用導數(shù)求閉區(qū)間上函數(shù)的最值;利用導數(shù)研究函數(shù)的單調(diào)性;函數(shù)在某點取得極值的條件.
點評:本題有一定的探索性,綜合性,難度大,易出錯,是高考的重點,對數(shù)學思維的要求比較高,要求學生理解“存在”、“恒成立”的問題,并能把問題轉化為我們能理解的形式。比如此題,求對任意的,都存在,使得成立,可以轉化為求當時,的值域是()值域的子集。
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com