【題目】東京夏季奧運(yùn)會(huì)推遲至2021723日至88日舉行,此次奧運(yùn)會(huì)將設(shè)置4 100米男女混泳接力賽這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國(guó)家派出22女共計(jì)4名運(yùn)動(dòng)員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運(yùn)動(dòng)員完成,且每名運(yùn)動(dòng)員都要出場(chǎng).若中國(guó)隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或者蛙泳,剩下2名運(yùn)動(dòng)員四種泳姿都可以承擔(dān),則中國(guó)隊(duì)參賽的安排共有(

A.144B.8C.24D.12

【答案】B

【解析】

由甲只能承擔(dān)仰泳或者自由泳,可分為兩種情況,分別討論,進(jìn)而利用分類加法計(jì)數(shù)原理,可求出答案.

由題意,若甲承擔(dān)仰泳,則乙運(yùn)動(dòng)員有種安排方法,其他兩名運(yùn)動(dòng)員有種安排方法,共計(jì)種方法;

若甲承擔(dān)自由泳,則乙運(yùn)動(dòng)員有種安排方法,其他兩名運(yùn)動(dòng)員有種安排方法,共計(jì)種方法.

所以中國(guó)隊(duì)參賽共有種不同的安排方法.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某超市2019年中的12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示,則下列說(shuō)法中,錯(cuò)誤的是( )

A.該超市在2019年的12個(gè)月中,7月份的收益最高;

B.該超市在2019年的12個(gè)月中,4月份的收益最低;

C.該超市在20197月至12月的總收益比21091月至6月的總收益增長(zhǎng)了90萬(wàn)元;

D.該超市在20191月至6月的總收益低于21097月至12月的總收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):

下列敘述錯(cuò)誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好

D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,點(diǎn),點(diǎn)、分別為橢圓的上頂點(diǎn)和左焦點(diǎn),且.

1)求橢圓的方程;

2)若過(guò)定點(diǎn)的直線與橢圓交于,兩點(diǎn)(,之間)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形為菱形?如果存在,求出的取值范圍?如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an},等比數(shù)列{bn}滿足:a1b1=1,a2b2,2a3b3=1.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)遞增區(qū)間;

2)若函數(shù)有兩個(gè)極值點(diǎn)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì)任意的,均有,求的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫出的極坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(,為常數(shù),為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),討論函數(shù)在區(qū)間上極值點(diǎn)的個(gè)數(shù);

2)當(dāng),時(shí),對(duì)任意的都有成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案