13.已知向量$\vec a,\vec b$滿(mǎn)足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$與$\vec b$夾角為30°,那么$\vec a•\vec b$等于( 。
A.1B.$\sqrt{3}$C.3D.$3\sqrt{3}$

分析 利用已知條件,通過(guò)向量的數(shù)量積公式求解即可.

解答 解:向量$\vec a,\vec b$滿(mǎn)足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$與$\vec b$夾角為30°,
那么$\vec a•\vec b$=|$\overrightarrow{a}$||$\overrightarrow$|cos$<\overrightarrow{a},\overrightarrow>$=2$\sqrt{3}×\frac{\sqrt{3}}{2}$=3.
故選:C.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)y=$\frac{{2}^{x+1}}{{2}^{x}+1}$與函數(shù)y=$\frac{x+1}{x}$的圖象共有k(k∈N*)個(gè)公共點(diǎn),A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),則$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,AB是半圓O的直徑,點(diǎn)P為半圓O外一點(diǎn),PA,PB分別交半圓O于點(diǎn)D,C.若AD=2,PD=4,PC=3,求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1+a}{x}(a∈R)$.
(Ⅰ) 當(dāng)a=0時(shí),求曲線(xiàn)f (x)在x=1處的切線(xiàn)方程;
(Ⅱ) 設(shè)函數(shù)h(x)=alnx-x-f(x),求函數(shù)h (x)的極值;
(Ⅲ) 若g(x)=alnx-x在[1,e](e=2.718 28…)上存在一點(diǎn)x0,使得g(x0)≥f(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知向量$\vec a,\vec b$,那么$\frac{1}{2}(2\vec a-4\vec b)+2\vec b$等于( 。
A.$\vec a-2\vec b$B.$\overrightarrow{a}$-4$\vec b$C.$\vec a$D.$\vec b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.不等式組$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,表示的平面區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果圓C:(x-a)2+(y-3)2=5的一條切線(xiàn)的方程為y=2x,那么a的值為( 。
A.4或1B.-1或4C.1或-4D.-1或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖水平放置的一個(gè)平面圖形的直觀圖是邊長(zhǎng)為1cm的正方形,則原圖形的周長(zhǎng)是( 。
A.8cmB.6cmC.$2(1+\sqrt{3})cm$D.$2(1+\sqrt{2})cm$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.60名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖所示,則成績(jī)不低于80分的學(xué)生人數(shù)是24.

查看答案和解析>>

同步練習(xí)冊(cè)答案