已知各項均為正數(shù)的數(shù)列
滿足:
。
(1)求
的通項公式
(2)當
時,求證:
(1)
,猜測:
。用數(shù)學歸納法證明。
(2)即證:
試題分析:(1)
,猜測:
。下用數(shù)學歸納法證明:
①當
,猜想成立;
②假設當
時猜想成立,即
,
由條件
,
,
兩式相減得:
,則當
時,
,
時,猜想也成立。
故對一切的
成立。
(2)
,即證:
對
,令
(
),則
,
顯然
,
,所以
,
所以
,
在
上單調遞減.
由
,得
,即
.
所以
,
.
所以
. 得證。
點評:難題,歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題。歸納推理問題,往往與數(shù)列知識相結合,需要綜合應用數(shù)列的通項公式、求和公式等求解。本題利用數(shù)學歸納法證明不等式,對數(shù)學式子變形能力要求較高。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知等差數(shù)列
的前
項和為
,
,
,則數(shù)列
的前
項和為______________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
的前四項和為10,且
成等比數(shù)列
(1)求通項公式
(2)設
,求數(shù)列
的前
項和
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
滿足
,數(shù)列
滿足
.
(1)求數(shù)列
和
的通項公式;
(2)求數(shù)列
的前
項和;
(3)若
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列{
}滿足
=3,
=
。設
,證明數(shù)列{
}是等差數(shù)列并求通項
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知數(shù)列
是等差數(shù)列,它的前
項和
滿足:
,令
.若對任意的
,都有
成立,則
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列{an}的首項為3,{bn}為等差數(shù)列且bn=an+1-an(n∈N*).若b3=-2,b10=12,求a8的值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
中,已知前
項的和
,則
等于
A. | B.6 | C. | D.12 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
下圖是一個按照某種規(guī)律排列出來的三角形數(shù)陣
假設第
行的第二個數(shù)為
(1)依次寫出第七行的所有7個數(shù)字(不必說明理由);
(2)寫出
與
的遞推關系(不必證明),并求出
的通項公式
.
查看答案和解析>>