已知函數(shù) 
(1)解關(guān)于x的不等式f(x)<0;
(2)當(dāng)=-2時(shí),不等式f(x)>ax-5在上恒成立,求實(shí)數(shù)a的取值范圍;

(1)當(dāng)c<1時(shí),不等式的解集為,當(dāng)c=1時(shí),不等式的解集為,當(dāng)c>1時(shí),不等式的解集為。 ;(2)a<1+2 

解析試題分析:(1)        1分
①當(dāng)c<1時(shí),   
②當(dāng)c=1時(shí),,                 
③當(dāng)c>1時(shí),       4分
綜上,當(dāng)c<1時(shí),不等式的解集為,當(dāng)c=1時(shí),不等式的解集為,當(dāng)c>1時(shí),不等式的解集為。       5分
(2)當(dāng)=-2時(shí),f(x)>ax-5化為x2x-2>ax-5   
axx2x+3,x∈(0,2) 恒成立
a<(min    設(shè)  8分
≥1+2     10分
當(dāng)且僅當(dāng)x,即x∈(0,2)時(shí),等號(hào)成立  
∴g(x)min=(1+x)min=1+2               
a<1+2          12分
考點(diǎn):本題考查了不等式的解法及恒成立問題的解法
點(diǎn)評(píng):恒成立問題在解題過程中大致可分為以下幾種類型:
①一次函數(shù)型;②二次函數(shù)型;③變量分離型;④根據(jù)函數(shù)的奇偶性、周期性等性質(zhì);⑤直接根據(jù)函數(shù)的圖象。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為
(1)求函數(shù)的解析式;
(2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值都有求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知函數(shù),其中。
求函數(shù)的最大值和最小值;
若實(shí)數(shù)滿足:恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知方程x2+y2-2(m+3)x+2(1-4m2) y+16m4+9=0表示一個(gè)圓,(1)求實(shí)數(shù)m取值范圍;(2)求圓半徑r取值范圍;(3)求圓心軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)設(shè),其中為正實(shí)數(shù)。
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為R上的單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)a∈R且).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若對(duì)定義域內(nèi)任意,都有成立,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求的范圍;
(3)若,證明對(duì)任意正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性;(4分)
(2)若關(guān)于的方程有兩解,求實(shí)數(shù)的取值范圍;(6分)
(3)若,記,試求函數(shù)在區(qū)間上的最大值.(10分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知函數(shù)處有極值.
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問是否存在實(shí)數(shù),使得不等式對(duì)任意 及
恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案