已知點A(3,4),B(4,3),若點P(a,b)在線段AB上運動,則
b
a
的取值范圍是( 。
A、(-∞,
3
5
]∪[
5
3
,+∞]
B、(-∞,
3
4
]∪[
4
3
,+∞]
C、[
3
5
,
5
3
]
D、[
3
4
,
4
3
]
考點:斜率的計算公式
專題:直線與圓
分析:畫出圖形,求出OP的斜率,即可得到
b
a
的取值范圍.
解答:解:如圖:
b
a
表示線段上的點與原點連線的斜率,∴KOA=
4
3
,KOA=
3
4

b
a
的取值范圍是[
3
4
,
4
3
].
故選:D.
點評:本題考查直線的斜率的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E,F(xiàn)分別是棱AA′,CC′的中點,過直線E,F(xiàn)的平面分別與棱BB′、DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個命題:
(1)平面MENF⊥平面BDD′B′;
(2)當(dāng)且僅當(dāng)x=
1
2
時,四邊形MENF的面積最小;
(3)四邊形MENF周長L=f(x),x∈[0,1],則y=f(x+
1
2
)是偶函數(shù);
(4)四棱錐C′-MENF的體積V=h(x)為常函數(shù);
以上命題中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是(  )
A、對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”可信程度越大
B、用相關(guān)指數(shù)R2來刻畫回歸的效果時,R2的值越大,說明模型擬合的效果越好
C、殘差平方和越大的模型,擬合效果越好
D、作殘差圖時縱坐標(biāo)可以是解釋變量,也可以是預(yù)報變量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61,則
a
b
的夾角θ為( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log
1
2
x
的圖象為( 。
A、單調(diào)遞減
B、單調(diào)遞增
C、關(guān)于y軸對稱
D、關(guān)于x軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若f(x0)=x0,則稱x0為函數(shù)f(x)的“不動點”;若f(f(x0))=x0,則稱x0為函數(shù)f(x)的“穩(wěn)定點”.如果函數(shù)f(x)=x2+a(a∈R)的“穩(wěn)定點”恰是它的“不動點”,那么實數(shù)a的取值范圍是( 。
A、(-∞,
1
4
]
B、(-
3
4
,+∞)
C、(-
3
4
,
1
4
]
D、[-
3
4
,
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果指數(shù)函數(shù)y=(a-1)x是增函數(shù),則a的取值范圍是( 。
A、a>2B、a<2
C、a>1D、1<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC的四個頂點均在球心為O半徑為1的球面上,且滿足PA、PB、PC兩兩垂直,當(dāng)PC•AB的最大值時,三棱錐O-PAB的高為( 。
A、
3
3
B、
2
2
C、
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)的圖象中,其中不能用二分法求其零點的有( 。﹤
A、0B、1
C、2D、3x k

查看答案和解析>>

同步練習(xí)冊答案