(本題滿分12分)

已知橢圓的兩焦點是,離心率

(Ⅰ)求橢圓的方程;

(Ⅱ)若在橢圓上,且,求DPF1F2的面積.

 

【答案】

(Ⅰ).  (Ⅱ) S=|PF1|×|PF2| sinÐF1PF2

【解析】

試題分析:(Ⅰ)由已知條件c=1,,∴a=2,b=.……4分

故橢圓方程為. ……

(Ⅱ)由

∴|PF1|=,|PF2|=.……9分

由余弦定理cosÐF1PF2,∴sinÐF1PF2

∴D F1PF2的面積為S=|PF1|×|PF2| sinÐF1PF2.……12分

考點:本題主要考查橢圓的標準方程,橢圓的幾何性質(zhì),余弦定理。

點評:基礎題,涉及橢圓標準方程問題,要求熟練掌握a,b,c,e的關系,涉及“焦點三角形”問題,往往要利用橢圓的定義。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

,數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數(shù),為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案