【題目】九章算術(shù)中有一題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬,”馬主曰:“我馬食半牛”,今欲衰償之,問各出幾何?其意:今有牛、馬、羊吃了別人的禾苗,苗主人要求賠償五斗粟,羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比例償還,問羊的主人應(yīng)賠償______斗粟,在這個(gè)問題中牛主人比羊主人多賠償______斗粟.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是邊長為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.
(1)求角B的大。
(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(其中,為自然對數(shù)的底數(shù)).
①,使得直線為函數(shù)的一條切線;
②對,函數(shù)的導(dǎo)函數(shù)無零點(diǎn);
③對,函數(shù)總存在零點(diǎn);
則上述結(jié)論正確的是______.(寫出所有正確的結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱的側(cè)棱垂直于底面,且底面是邊長為2的正三角形,,點(diǎn)D,E,F分別是所在棱的中點(diǎn).
(1)在線段上找一點(diǎn)使得平面∥平面,給出點(diǎn)的位置并證明你的結(jié)論;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面四邊形中,,,再將沿著翻折成三棱錐的過程中,直線與平面所成角均小于直線與平面所成角,設(shè)二面角,的大小分別為,則( )
A.B.C.存在D.存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時(shí)期著名的數(shù)學(xué)家劉徽對推導(dǎo)特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個(gè)特殊數(shù)列的求和公式.這個(gè)題的大意是:一匹良馬和一匹駑馬由長安出發(fā)至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大氣污染是我國目前最突出的環(huán)境問題之一,其中工廠廢氣是大氣污染的重大污染源之一。工廠廢氣未經(jīng)凈化處理排放至空氣中,除了對空氣質(zhì)量造成嚴(yán)重破壞,還會(huì)對人體的健康造成重大威脅。長期生活在污染的空氣中,生活質(zhì)量及身體健康將急劇下降。某工廠因?yàn)槲廴締栴}需改進(jìn)技術(shù),2019年初購進(jìn)一臺環(huán)保新機(jī)器投入生產(chǎn),機(jī)器的成本價(jià)為36萬元,第年該機(jī)器包括維修費(fèi)和機(jī)器護(hù)理費(fèi)用在內(nèi),每年另需投人費(fèi)用萬元,購進(jìn)該機(jī)器后每年盈利20萬元.
(1)問該機(jī)器投入生產(chǎn)第幾年,工廠開始盈利(即總收入大于所有投人的費(fèi)用)?
(2)由于機(jī)器使用年限越大維修等費(fèi)用越高,所以工廠決定當(dāng)年平均利潤最大時(shí)將該機(jī)器以5萬元低價(jià)處理,問使用該機(jī)器幾年后工廠年平均利潤最大?此時(shí)工廠獲得的總利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓相切于第一象限的點(diǎn),且直線與軸,軸分別交于點(diǎn),,當(dāng)(為坐標(biāo)原點(diǎn))的面積最小時(shí),(,為橢圓的兩個(gè)焦點(diǎn)),則此時(shí)中的平分線的長度為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com