在極坐標(biāo)系中,極坐標(biāo)方程ρ=4sinθ表示的曲線是(  )
A、圓B、直線C、橢圓D、拋物線
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:直接根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程的互化公式即可.
解答: 解:由ρ=4sinθ,得
x2+y2=4y,
∴x2+(y-2)2=4,
它表示一個以(0,2)為圓心,以2為半徑的圓,
故選:A.
點評:本題重點考查了圓的極坐標(biāo)方程和直角坐標(biāo)方程的互化公式等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:實數(shù)m滿足m2+6a2<5am(a>0),命題q:實數(shù)m滿足方程
x2
m-1
+
y2
3-m
=1
表示焦點在y軸上的橢圓,若p是q的充分不必要條件,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
b
x
(a,b≠0,a,b∈R)
(1)當(dāng)b=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=a2時,若存在x0∈(0,e],使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
2
x
+lnx,f(x)=mx-
m-2
x
-lnx,m∈R
(1)若f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(2)設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得f(x0),使得f(x0)-g(x0)>h(x0)成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,
(1)求曲線C的直角坐標(biāo)方程.
(2)若P(x,y)是曲線C上的一動點,求x+2y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ex
x-a
的導(dǎo)函數(shù)為f'(x)(a為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ) 討論函數(shù)f(x)的單調(diào)性;
(Ⅱ) 求實數(shù)a,使曲線y=f(x)在點(a+2,f(a+2))處的切線斜率為-
a3+6a2+12a+7
4
;
(Ⅲ) 當(dāng)x≠a時,若不等式|
f′(x)
f(x)
|+k|x-a|≥1恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,且有f(c)=0,當(dāng)0<x<c時,恒有f(x)>0.
(1)當(dāng)a=1,c=
1
2
時,解不等式f(x)<0;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
(3)若f(0)=1,且f(x)≤m2-2km+1對所有x∈[0,c],k∈[-1,1]恒成立,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求拋物線C:y=x2上的點到直線l:y=
1
2
x-1的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的表面積是
 

查看答案和解析>>

同步練習(xí)冊答案