考點(diǎn):數(shù)列的求和,等比數(shù)列的前n項(xiàng)和
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設(shè)等比數(shù)列{a
n}的公比為q,由a
1a
2a
3=125.可得a
2=5,又a
3-a
2=10,a
3=15求出首項(xiàng)與公比及前n項(xiàng)和.
(Ⅱ)由(Ⅰ)知,b
n=n(S
n+
)=
n[(3n-1)+]=
n•3n利用錯(cuò)位相減求出前n項(xiàng)和.
解答:
解:(Ⅰ)設(shè)等比數(shù)列{a
n}的公比為q,由a
1a
2a
3=125.
可得a
2=5,又a
3-a
2=10,
∴a
3=15
∴
q==3∴
a1==∴
Sn==(3n-1)(Ⅱ)由(Ⅰ)知,b
n=n(S
n+
)=
n[(3n-1)+]=
n•3n∴
Tn=(1×3+2×32+…+n•3n)設(shè)
An=1×3+2×32+…+n•3n①
3An= 1×32+…+(n-1)•3n + n•3n+1②
②-①得
2An=-3-32-33-…-3n+n•3n+1=-
+n•3n+1∴
An=-×+•3n+1=
•3n+1+∴
Tn=An=•3n+
點(diǎn)評(píng):本題考查數(shù)列通項(xiàng)公式及前n項(xiàng)和的求法,求和的關(guān)鍵是先求通項(xiàng),據(jù)通項(xiàng)特點(diǎn)選擇合適的方法,屬于一道中檔題.